

# THUIR at the NTCIR-14 Lifelog-3 Task: How does Lifelog help the user's status recognition



# Isadora Nguyen Van Khan, Pranita Shrestha, Min Zhang, Yiqun Liu, Shaoping Ma

Department of Computer Science and Technology, Institute for Artificial Intelligence, Beijing National Research Center for Information Science and Technology, Tsinghua University

z-m@tsinghua.edu.cn

#### \*\* Goal

### Recognize different statuses according to:

- > Non visual data (biometrics, location, activity ...)
- > Visual based data (semantic data extracted from images)
- > Both visual and non visual data

# > Statuses selected:

- Inside or Outside
- >Alone or not alone (is there at least one person surrounding the user)
- ➢ Working or not working

# Motivation

- > Automatic way to know the user's statuses
- >Use of the recognized statuses as features for other researches and applications

# **Features and Models**

### > Non visual Features:

| Categories  | Features                                                                     |  |  |
|-------------|------------------------------------------------------------------------------|--|--|
| User        | UserID                                                                       |  |  |
| Environment | Location, City, GPS coordinates (longitude, latitude),<br>Time of the sample |  |  |
| Biometrics  | Heart Rate, Calories                                                         |  |  |
| Activity    | Steps, Activity                                                              |  |  |

### > Visual based Features:

- > Extraction of tags from the image using a concept detector (MS Vision API)
- > Create a semantic graph with the tags
- > Clustering the tags with the Markov Cluster Algorithm
- > Labelling the clusters according to the status
- > According to the image tags, recognizing the status

# > Machine Learning Models for the Non-Visual Features:

- > AdaBoost + Random Tree and AdaBoost+ C4.5
- Bagging + C4.5 and Bagging + LMT
- Random Forest

#### > Model for the Visual based Features:

- > Annotation of the clusters according to the statuses
- > For each sample, tags take the status of the cluster they belong
- > The main status is considered as the recognition status

#### \* Results and Features Analysis

- Experiment Design:
  - > Model train, validation, and feature analysis using 10-fold cross validation
  - > Feature analysis by elimination one feature category at a time and by training using only one feature at a time

### Results and Feature Analysis:

#### > Non visual Features:

| Experiment                               | Highest<br>Accuracy | Correspondent<br>Model    | Effective Feature<br>Categories                   |
|------------------------------------------|---------------------|---------------------------|---------------------------------------------------|
| Inside or<br>Outside<br>Recognition      | 88.6%               | AdaBoost +<br>Random Tree | 1-Time, 2-Steps,<br>3-Latitude/Longitude          |
| Alone or not<br>Alone<br>Recognition     | 74.2%               | AdaBoost +<br>Random Tree | 1-Time, 2-Latitude/Longitude<br>3-Heart Rate      |
| Working or not<br>Working<br>Recognition | 80.2%               | AdaBoost +<br>Random Tree | 1-Heart Rate, 2-Time,<br>3-Latitude and Longitude |

#### > Visual based Features:

For alone and working tasks, the testing set only contains 100 samples Inside or Outside status: 95.9%

- Alone or not Alone status: 55.1%
- Working or not Working status: 76.4%

#### > Merged Features:

For alone and working tasks, the training and testing set contains 200 samples

| Experiment                            | Highest Accuracy | Correspondent Model |
|---------------------------------------|------------------|---------------------|
| Inside or Outside<br>Recognition      | 99.5%            | AdaBoost + C4.5     |
| Alone or not Alone<br>Recognition     | 66.2%            | Random Forest       |
| Working or not Working<br>Recognition | 76.5%            | Bagging + LMT       |

#### Statistics



- Recognition of 3 statuses using 3 different methods:
- > For inside and outside, the best set of features is the merged features
- > For alone or not alone the best features are the non visual features
- > For working and not working, the best set is also the non visual one
- > No smaller set of features could be found for the non visual features

# Future Work

- ➢ For alone and working statuses, train and test for the visual based features and the merged features with bigger set of features.
- Prediction of these statuses

#### ÷. Acknowledgement

This work is supported by Natural Science Foundation of China (Grant No. 61672311, 61532011) and the National Key Research and Development Program of China (2018YFC0831900)

# Conclusions