RICT at the NTCIR-14 QALab-PoliInfo Task

Jiawei Yong, Shintaro Kawamura, Katsumi Kanasaki, Shoichi Naitoh, and Kiyohiko Shinomiya

Ricoh Company, Ltd.

Segmentation

RICOH

imagine. change.

Segmentation subtask in 2 steps

1. The segmentation step splits the assembly utterances

Classification

Challenge1: Imbalance

Relevance("1"):Irrelevance("0") = 9390:901 = 10:11. We regard Majority class as normal data, minority class as

- into segments.
- 2. The search step finds a sequence of segments that corresponds to a given summary.

Data set preparation

- The training data set provided by the task organizer was used as the development data for the search step.
- Additional training/development data sets were lacksquareprepared for the segmentation step.

Cue-phrase-based segmentation step

Tried methods include a novel semi-supervised method, which iteratively learns features of cue phrases at segment boundaries through bootstrapping.

- outlier.
- 2. We have constructed a tree by random feature selection, and then divided it into several sub trees. The average value of "shallowness" is regarded as the final abnormal score (threshold).

Challenge2: Low Kappa Statistic

The low kappa statistic shows that there are different understandings about labeling thus leading to a doubt of label correctness.

1. Unanimous training data prefers to quality rather than quantity. Here we only pick up the data with same labels from all workers. (1) Unanimous training data

Probability-model-based search step

The sequence of segments that maximizes $\sum_{i=1}^{k} idf(t_i) - \sum_{i=1}^{k} idf(t_i)$ $\lambda k \log(n)$ is selected, where the sequence contains words $t_i(i = 1, ..., k)$ in the summary, and the sequence consists of *n* utterances.

 $\lambda = 0.4$ for questions and 0.7 for answers (determined by the development data)

2. Majority training data places a higher value on quantity than quality.

Learning Model

News Detection Support for Fact Check(NLP2018)

Suspicious News Detection Using Micro Blog Text (2018)

Challenge3: Underfitting

Learning for each individual topic would easily cause underfitting problem. Here we apply integrated model.

Evaluation results

The rule-based segmentation was the best during the formal run (rank 1 in F1). The method using a hierarchical attention network, which was tried after the formal run, also shows good performance.

	Question			Answer		
Segmentation method	Recall	Precision	F1	Recall	Precision	F1
rule-based (pattern matching)	0.851	0.913	0.881	0.949	0.903	0.925
BoW + SVM	0.819	0.851	0.834	0.913	0.939	0.925
pre-trained word2vec + LSTM	0.916	0.690	0.780	0.909	0.925	0.914
word embeddings + HAN	0.871	0.874	0.873	0.949	0.921	0.934
semi-supervised	0.836	0.760	0.796	0.907	0.814	0.858
no segmentation	0.828	0.715	0.767	0.680	0.839	0.751

Evaluation results

The high F1 scores indicate that the above problems have been alleviated effectively, but still need some more tuning.

Classification Subtasks	Top Values of RICT Runs for each criteria									
	Accuracy	1-Recall	1-Precision	1-F1	0-Recall	0-Precision	0-F1			
1. Relevance	0.857 (rank 7)	0.99	0.865	0.923 (rank 7)	0.524	0.332	0.406 (rank 2)			
2. Fact- checkability	0.729 (rank 3)	0.693	0.476	0.564 (rank 3)	0.899	0.738	0.811 (rank 3)			
0. 3. Stance (ra	0.000	0.295	0.63	0.40 (rank 3)		0.827	0.889 (rank 2)			
	0.808 (rank 1)	2-Recall	2-Precision	2-F1	0.962					
		0.194	0.579	0.290 (rank 4)						