

Ē

RUCIR at NTCIR-14 WWW Task

Speaker: Jiaqing Liu

School of Information Renmin University of China

Author: Xue Yang and Zhicheng Dou

Outline

- WWW @ NTCIR-14
- Overview
- Model
- Results and analysis
- Conclusion

WWW @ NTCIR-14

- Goal: An ad hoc web search task
 - Ranking Web pages with their relevance
- Subtask 1: Chinese
 - SogouT-16 Corpus, SogouQCL Corpus
- Subtask 2: English
 - ClueWeb12-B13 Corpus

Data-Flow Overview

• Four steps

_

Data Preprocessing

 Pre-processing <u>web</u> <u>corpus</u>: cleaning, parsing and indexing using Solr

	I Statistics					
SOL	Last Modified: Num Docs:		12 months ago 50220423			
🚳 Dashboard	Heap Memo	Max Doc: orv Usage:	5022042 -1	23		
📄 Logging	Dele	eted Docs:	0			
Core Admin	Segme	version: ent Count:	431574 1			
🚊 Java Properties	-	Optimized:	~			
📄 Thread Dump		Current:	≮			
	ංස Replication (Ma	ster)				
trec09_bm25 👻		Version		Gen	Size	
Overview	Master (Searching) 1480877	7403545	77302	390.68 GB	
T Analysis	Master (Replicable) -		-	-	
🔊 Dataimport						
Documents	🖶 Admin Extra					
Files						
📧 Ping						
晶 Plugins / Stats						
D Query						

- Collecting <u>official</u> and previous <u>TREC</u> and <u>NTCIR</u> Competition <u>labeled data</u> for training models.
- We do not use user behavior data

Feature Extraction

- Traditional Features
 - Traditional relevance features for different fields
- Embedding Features
 - Cosine <u>similarity</u> between the distributed representations of query and document
- Deep Neural Features
 - Matching <u>scores</u> of unlabeled query-document pair by deep neural <u>matching models</u>

- Traditional Features
 - Relevance features for four fields
 - Anchor, title, URL, and body
 - Relevance features for the whole document

Name	Description	Fields
BM25	BM25 with default parameters	(anchor), title, URL, body, whole
TF-IDF	TF-IDF model	(anchor), title, URL, body, whole
LMIR	Language model with Dirichlet smoothing	(anchor), title, URL, body, whole
TF	Sum of term frequency	(anchor), title, URL, body, whole
IDF	Sum of inverse document frequency	(anchor), title, URL, body, whole
DL	Document length	(anchor), title, URL, body, whole
\mathbf{PM}	Perfect match	(anchor), title, URL, body, whole
CM	Complete match	(anchor), title, URL, body, whole

- Embedding Features
 - Word2Vec (Mikolov et al., 2013)
 - Get representations of query and document by averaging the word embedding of terms

•
$$V_{di} = \frac{1}{n} \sum_{j=1}^{n} Term_{ji}$$
, $j \in [1 \dots n]$

- Cosine similarity between query representation and document representation as feature
- Basic use of pre-train word embedding

- Deep Neural Features (Matching Score)
 - ARC-I (Hu et al., 2014)

- Learn representation vectors of query and document with CNNs
- Get the matching score by a multi-layer perceptron layer (MLP)

- Deep Neural Features (Matching Score)
 - ARC-II (Hu et al., 2014)

- Learn interaction representation vectors for query and document
- Get the matching score by a MLP after 2D pooling and convolution

- Deep Neural Features (Matching Score)
 - DRMM (Guo et al., 2016)

- Matching histograms: interaction between query term with document
- Matching score: based on MLP and calculated by a softmax function

- Deep Neural Features (Matching Score)
 - aNMM (Yang et al., 2016)

- Use value-shared weighting rather than position-shared (ARC-II)
- Integrate the results of each query term with a softmax function

- Deep Neural Features (Matching Score)
 - MV-LSTM (Wan et al., 2016)

- Learn representation of query and document by bi-LSTMs
- Build interaction matrix with cosine and get score by MLP

- Deep Neural Features (Matching Score)
 - *DUET* (Mitra et al., 2017)

- Local representations: one-hot encoding to exact term match
- Distributed representations: latent embedding based topic model

Model Training

• Input Format

			А	document		
0	qid:1	1:3.00000000	2:2.07944154	3:0.42857143	4:0.40059418	5:37.33056511
2	qid:1	1:0.00000000	2:0.00000000	3:0.00000000	4:0.00000000	5:37.33056511
2	qid:1	1:4.00000000	2:2.77258872	3:0.33333333	4:0.32017083	5:37.33056511
0	qid:1	1:0.0000000	2:0.0000000	3:0.00000000	4:0.00000000	5:37.33056511
1	qid:1	1:1.00000000	2:0.69314718	3:0.14285714	4:0.13353139	5:37.33056511
0	qid:1	1:0.00000000	2:0.0000000	3:0.00000000	4:0.00000000	5:37.33056511
0	qid:1	1:1.00000000	2:0.69314718	3:0.50000000	4:0.40546511	5:37.33056511
0	qid:1	1:3.00000000	2:2.07944154	3:0.60000000	4:0.54696467	5:37.33056511
0	qid:1	1:0.00000000	2:0.0000000	3:0.00000000	4:0.00000000	5:37.33056511
0	qid:1	1:1.00000000	2:0.69314718	3:0.33333333	4:0.28768207	5:37.33056511
0	qid:1	1:0.00000000	2:0.0000000	3:0.00000000	4:0.00000000	5:37.33056511
1	qid:1	1:0.00000000	2:0.0000000	3:0.00000000	4:0.00000000	5:37.33056511
1	qid:1	1:2.00000000	2:1.38629436	3:0.28571429	4:0.26706279	5:37.33056511
-						

Relevance label

A feature

- Model
 - Ranklib: LambdaMART

Evaluation Metrics

- nDCG@K
 - $nDCG@K = N_K^{-1} \sum_{i=1}^n g(r_i)d(i)$
- Q@K

•
$$Q@K = \frac{1}{\min(K,R)} \sum_{r=1}^{k} J(r) \frac{C(r) + \beta c g(r)}{r + \beta c g^{*}(r)}$$

- nERR@K
 - $nERR@K = \sum_{r=1}^{K} \frac{1}{r} \prod_{i=1}^{r-1} (1 R_i) R_r$

Results (Chinese)

Run	Query	Features	nDCG@10	Q@10	nERR@10
RUCIR-1	Description	Traditional Embedding	0.4515	0.4228	0.5792
RUCIR-2	Content	Traditional Embedding	0.4866	0.4571	0.6044
RUCIR-3	Description	Traditional	0.4503	0.4223	0.5630
RUCIR-4	Description	Traditional Deep Neural	0.4458	0.4226	0.561937
RUCIR-5	Description	Deep Neural	0.2745	0.2404	0.3832

Results (English)

Run	Query	Features	nDCG@10	Q@10	nERR@10
RUCIR-1	Description	Traditional	0.3137	0.2973	0.4469
RUCIR-2	Content	Traditional	0.3489	0.3352	0.4917
RUCIR-3	Description	Traditional Embedding	0.3137	0.2973	0.4469
RUCIR-4	Description	Traditional Deep Neural	0.3293	0.3094	0.4602
RUCIR-5	Description	Deep Neural	0.2876	0.2659	0.4188

Analysis

- [CN & EN] Query content Run > Query description Run (CO > DE)
- [CN] Traditional features Run + Embedding features Run > Other Runs (1 > 3, 4, 5)
- [EN] Traditional features Run + Deep neural features Run > Other Runs (4 > 1, 3, 5)
- [CN & EN] Deep neural features Run << Other Runs (5 << 1, 2, 3, 4)

Conclusion

- We Want Web task
 - Matching with <u>query content</u> is better than matching with <u>query description</u>
 - Traditional text relevance features are still <u>stable</u> and <u>effective</u>
 - Using embedding feature can help a little
 - Using <u>deep neural features</u> can help but less than expectation, which needs future research

Thanks

Speaker: Jiaqing Liu

Author: Xue Yang and Zhicheng Dou

Email: {ruc_yangx, dou}@ruc.edu.cn