
RUCIR at the NTCIR-14 We Want Web-2 Task

Xue Yang, Shuqi Lu, Shijun Wang, Han Zhang, and Zhicheng Dou?

Beijing Key Laboratory of Big Data Management and Analysis Methods, China
Key Laboratory of Data Engineering and Knowledge Engineering, MOE, China

School of Information, Renmin University of China, Beijing 100872, China
{ruc yangx,lusq,wangshijun,zhanghanjl,dou}@ruc.edu.cn

Abstract. The RUCIR team participated in the Chinese and English
subtasks of the NTCIR-14 We Want Web-2 (WWW-2) Task. In this
paper, we illustrate our approach for solving the ad hoc Web search
problem and display the official results. For both Chinese and English
subtasks, we adopted a learning to rank framework to re-rank candidate
documents for each query. We extracted several traditional ranking fea-
tures for each query-document pair, and at the same time, we trained
deep neural models to get matching scores, and use the matching scores
as deep features. The traditional features and deep features are fused by
the learning to rank model.

Keywords: Web search ranking · Learning to rank · Neural IR

Team Name. RUCIR

Subtasks. We Want Web-2 (Chinese, English)

1 Introduction

The RUCIR team participated in the Chinese and English subtasks of the
NTCIR-14 We Want Web-2 (WWW-2) Task [7]. This report illustrates our ap-
proach in the task and displays the results.

Ad-hoc retrieval is a common task of information retrieval. In ad-hoc re-
trieval, given a query and a text-based corpus, the system returns the relevant
items. Query is a short textual description of the user’s information need. Corpus
is a collection of textual documents. Relevance means satisfying the users infor-
mation need. Essentially, information retrieval can be considered as a problem
of matching a query and a document.

Traditional IR models focus on statistical information of documents or exact
term matching information between queries and documents. In this task, we
implement traditional features, including BM25 [10], TF [3], IDF [3], TF-IDF [3],
LMIR [13], document length, perfect match and complete match.

However, information need is not just the literally sequence of terms. It con-
tains semantic information about the real information need. There are lots of

? Corresponding author: Zhicheng Dou.

NTCIR-14 Conference: Proceedings of the 14th NTCIR Conference on Evaluation of Information Access Technologies, June 10-13, 2019 Tokyo Japan

481

2 Xue Yang et al.

synonyms and polysemous words (or phrases) in natural languages, which are out
of the consideration of exact matching methods. Therefore, there is a desire to
introduce semantic matching methods into information retrieval. Recently, deep
learning has been widely used to handle the semantic matching problem, such
as paraphrase identification and question answering. Taking advantage of deep
learning, several neural IR models have been proposed. Deep neural models [4, 2,
12, 11, 9] learn to match documents and queries for ad-hoc ranking using neural
networks. In this task, we introduce several deep neural IR models to generate
deep neural features, including ARC-I [4], ARC-II [4], DRMM [2], aNMM [12],
MV-LSTM [11] and DUET [9].

We believe that both the traditional matching features and the semantic
matching information generated by deep neural networks are useful to ad-hoc
ranking. Therefore, in the WWW-2 task, we try to leverage both types of fea-
tures. We use the learning to rank [5] framework, which is able to incorporate
both types of features, to train the final ranking model. More specifically, we
use the LambdaMART [1] model, since it’s one of the best learning to rank
frameworks. We use the trained ranking model to estimate the documents rele-
vance, and re-rank the documents in the baseline ranking lists provided by the
organizer.

The rest of the paper is organized as follows. Section 2 introduces our model
for this task and illustrates the details. Section 3 shows evaluation results of our
submitted runs and provides discussion. We conclude in Section 4.

2 Learning to Rank Model

In this section, we introduce our work on WWW-2 task. The basic framework
of our model is LambdaMART, a well performed learning to rank algorithm.
Then, we focus on feature engineering. We extract multiple features from query-
document pairs, including traditional features and deep neural features. Based
on the extracted features, we utilize LambdaMART and re-rank the unlabeled
data in the light of obtained ranking scores.

2.1 Dataset

Official Dataset We use the official dataset for this task. More specifically, for
Chinese Subtask, we use the SogouT-16 [6] and SogouQCL [14] as the document
collection. SogouT-16 contains about 1.17B Web pages, but we only index part of
the ”Category B” version from SogouT-16. Sogou-QCL contains 537,366 queries
and 5 kinds of weak relevance labels based on different click models for over
12 million query-document pairs. It contains 2,000 Chinese queries with the
traditional relevance assessments which are annotated by three trained assessors
as well. Although users’ behaviour information is available, we haven’t used them
in the submitted runs due to the tight schedule of the task. For the English Task,
we adopt the ClueWeb12-B13 as the document collection.

NTCIR-14 Conference: Proceedings of the 14th NTCIR Conference on Evaluation of Information Access Technologies, June 10-13, 2019 Tokyo Japan

482

RUCIR at the NTCIR-14 We Want Web-2 Task 3

Training Dataset For English task, we adopt Category A of ClueWeb09 and
Category B of ClueWeb12 for training data. We also collect about 300 queries
and their relevance judgment files from TREC09 to TREC14 competitions. For
Chinese task, we adopt Category B of SogouT-16 and Sogou-QCL as training
data. We also use the subset of Sogou-QCL which contains 2,000 queries and
about 20 query-document relevance judgments for each query.

2.2 Feature Extraction

We consider ranking task as a machine learning problem. So, we need to extract
various kinds of features for each query-document pair for model training. Each
training sample is represented by a multi-dimensional feature vector, and each
dimension of the vector is a feature which indicates the importance of the docu-
ment with respect to the query in terms of the feature aspect. In our model, we
implement two kinds of features: traditional features and deep neural features.

Traditional Features We implement several relevance features that are widely
used in existing works. Noting that we have four fields for each document: body,
anchor, title, and URL, so the following features are implemented over each field.
We also implement another group of features for combining all content of the
four fields (the whole document). We show the brief introduction to the features
in Table 1. More specifically, we have the following features:

– TF, IDF, TF-IDF: TF (term frequency) denotes the number of occurrences
of query term in document. IDF (inverse document frequency) is computed
as follows:

idf(qi) = log
|C| − df(qi) + 0.5

df(qi) + 0.5

where df(qi) is the number of documents which contain query term qi, |C|
is the number of all the documents in document collection. TF-IDF is the
product of TF and IDF.

– BM25: BM25 (Best Match) is computed as follows:

BM25(d, q) =
∑
qi∈q

idf(qi) · tf(qi, d) · (k1 + 1)

tf(qi, d) + k1 · (1− b+ b · |d|avgdl)

where avgdl denotes the average document length in the corpus. In this task,
we set k1 = 2.5, and b = 0.8.

– LMIR: A smoothing method for language model. LMIR is computed as fol-
lows:

pµ(w|d) =
c(w; d) + µ(p(w|C)∑

w c(w; d) + µ

The idea is to adjust the probabilities of according to the query.
– PerfectMatch: Boolean value. It identifies whether the entire query string

occurs in the document.

NTCIR-14 Conference: Proceedings of the 14th NTCIR Conference on Evaluation of Information Access Technologies, June 10-13, 2019 Tokyo Japan

483

4 Xue Yang et al.

Table 1. Traditional Features. (Anchor is only used in the English subtask)

Name Description Fields

BM25 BM25 with default parameters (anchor), title, URL, body, whole
TF-IDF TF-IDF model (anchor), title, URL, body, whole
LMIR Language model with Dirichlet smoothing (anchor), title, URL, body, whole
TF Sum of term frequency (anchor), title, URL, body, whole
IDF Sum of inverse document frequency (anchor), title, URL, body, whole
DL Document length (anchor), title, URL, body, whole
PM Perfect match (anchor), title, URL, body, whole
CM Complete match (anchor), title, URL, body, whole

– CompleteMatch: Boolean value. It means whether all the query terms oc-
cur in the document. DIfferent from PerfectMatch, CompleteMatch doesn’t
consider the order of the query terms.

Deep Neural Features First, we use Word2vec [8] to obtain the distributed
representations of queries and documents. We utilize Word2vec to obtain the
vector of each term occurs in the corpus. Then the distributed representations
of a query or a document can be defined as the mean vector of the terms in the
corresponding query and the document. We then calculate the cosine similarity
between a query representation and a document representation as a embedding
feature for a query-document pair. Embedding features can be regarded as the
basic use of word embedding and the pre-trained word embedding will be applied
to deep neural models we utilize in this task.

To obtain deep neural features, we train deep neural matching models and
use the trained models to calculate the matching scores of unlabeled query-
document pairs as deep neural features. The deep neural models we used in this
task are as follows:

ARC-I [4], which learns representation vectors for two pieces of text respectively
with CNNs and gets the matching score by a multi-layer perceptron layer (MLP).

ARC-II [4], a variant of ARC-I. The model first learns the interaction represen-
tation of two texts by 1D convolution, rather than independent representation.
After a series of 2D convolution and 2D pooling, the final matching score is
calculated by an MLP layer.

DRMM [2], which generates matching histograms from interactions between
each query term and document. All the histograms then go through MLP to
get corresponding matching score and the final score is calculated by a softmax
function.

aNMM [12], which replaces the position-shared weighting with value-shared
weighting in ARC-II, and integrates the result of each query term with a softmax
function.

NTCIR-14 Conference: Proceedings of the 14th NTCIR Conference on Evaluation of Information Access Technologies, June 10-13, 2019 Tokyo Japan

484

RUCIR at the NTCIR-14 We Want Web-2 Task 5

MV-LSTM [11], which presents input text by bidirectional long short-term mem-
ory networks (bi-LSTMs), and builds interaction matrix with cosine similarity
between text representations generated by different central words. A k-max pool-
ing and a MLP are behind.

DUET [9], which combines the results of two deep neural models. One matches
the local representations of query and document, another matches the learned
distributed representations of query and document.

2.3 Model Training

From several learning to rank algorithms, we choose LambdaMART [1], a stable
approach which can directly optimize evaluation metrics, to train, validate and
test on the dataset.

We partition the training data into five equal parts for 5-fold cross validation.
We select 4 folds for training and the other as validation data each time. The
training set is used to learn ranking models. The validation set is used to tune the
hyper parameters of the learning algorithms, such as the number of iterations in
LambdaMART. After obtaining the hyper parameters, we finally train a model
on these five folds for further testing.

2.4 Evaluation Metrics

In both Chinese and English tasks, we use nDCG@K, Q@K and nERR@K for
evaluation.

nDCG@K is defined as follows:

nDCG@k = N−1k

n∑
i=1

g(ri)d(i)

where k means the number of results to be evaluated. Nk denotes the maximum
of

∑n
i=1 g(ri)d(i) and it is used for normalization. ri denotes the relevance level

of the document ranked at the i-th position. g(ri) denotes a gain and d(i) denotes
a discounting function.

Q@K is defined as follows:

Q@K =
1

min(K,R)

K∑
r=1

J(r)
C(r) + βcg(r)

r + βcg∗(r)

where R is the number of relevant documents. J(r) denotes the relevance level
of the document ranked at the r-th position. C(r) is the number of relevant
documents from position 1 to r. cg(r) denotes cumulative gain at position r.

nERR@K is defined as follows:

nERR@K =

K∑
r=1

1

r

r−1∏
i=1

(1−Ri)Rr

where
∏r−1
i=1 (1 − Ri)Rr denotes the probability that user is satisfied with the

document at position r and stops browsing.

NTCIR-14 Conference: Proceedings of the 14th NTCIR Conference on Evaluation of Information Access Technologies, June 10-13, 2019 Tokyo Japan

485

6 Xue Yang et al.

3 Runs and Evaluation

3.1 Submitted Runs

For Chinese subtask, we submit the following five runs (“DE” in the run name
means matching with query description, “CO” means matching with query con-
tent):

RUCIR-C-DE-PU-Base-1. In this run, we train learning to rank model based
on traditional features and embedding features which are obtained by matching
query description and multiple document fields.

RUCIR-C-CO-PU-Base-2. In this run, we train learning to rank model based
on traditional features and embedding features which are obtained by matching
query content and multiple document fields.

RUCIR-C-DE-PU-Base-3. In this run, we train learning to rank model based
on traditional features which are obtained by matching query description and
multiple document fields.

RUCIR-C-DE-PU-Base-4. In this run, we train learning to rank model based
on traditional features and deep neural features which are obtained by matching
query description and multiple document fields.

RUCIR-C-DE-PU-Base-5. In this run, we train learning to rank model based
on deep neural features which are obtained by matching query description and
multiple document fields.

For English subtask, we submit the following five runs (“DE” in the run name
means matching with query description, “CO” means matching with query con-
tent):

RUCIR-E-DE-PU-Base-1. In this run, we train learning to rank model based
on traditional features which are obtained by matching query description and
multiple document fields.

RUCIR-E-CO-PU-Base-2. In this run, we train learning to rank model based on
traditional features which are obtained by matching query content and multiple
document fields.

RUCIR-E-DE-PU-Base-3. In this run, we train learning to rank model based
on traditional features and embedding features which are obtained by matching
query description and multiple document fields.

RUCIR-E-DE-PU-Base-4. In this run, we train learning to rank model based
on traditional features and deep neural features which are obtained by matching
query description and multiple document fields.

NTCIR-14 Conference: Proceedings of the 14th NTCIR Conference on Evaluation of Information Access Technologies, June 10-13, 2019 Tokyo Japan

486

RUCIR at the NTCIR-14 We Want Web-2 Task 7

Table 2. Official results of Chinese subtask.

Runs nDCG@10 Q@10 nERR@10

RUCIR-C-DE-PU-Base-1 0.4515 0.4228 0.5792
RUCIR-C-CO-PU-Base-2 0.4866 0.4571 0.6044
RUCIR-C-DE-PU-Base-3 0.4503 0.4223 0.5630
RUCIR-C-DE-PU-Base-4 0.4458 0.4226 0.5619
RUCIR-C-DE-PU-Base-5 0.2745 0.2404 0.3832

Table 3. Official results of English subtask.

Runs nDCG@10 Q@10 nERR@10

RUCIR-E-DE-PU-Base-1 0.3137 0.2973 0.4469
RUCIR-E-CO-PU-Base-2 0.3489 0.3352 0.4917
RUCIR-E-DE-PU-Base-3 0.3137 0.2973 0.4469
RUCIR-E-DE-PU-Base-4 0.3293 0.3094 0.4602
RUCIR-E-DE-PU-Base-5 0.2876 0.2659 0.4188

RUCIR-E-DE-PU-Base-5. In this run, we train learning to rank model based
on deep neural features which are obtained by matching query description and
multiple document fields.

3.2 Experimental Results

Table 2 and Table 3 show the evaluation results of our submitted runs.
From Table 2 and Table 3, we find that matching with original query achieves

better performance than matching with query description, i.e., RUCIR-C-CO-PU
-Base-2 and RUCIR-E-CO-PU-Base-2 outperform other runs (containing “DE”
in the name). Perhaps in a matching problem, original query is more suitable
to interact with document rather than query intent. In the Chinese subtask, the
combination of traditional features and embedding features (RUCIR-C-CO-PU
-Base-2) outperforms other feature sets. In the English subtask, traditional
features (RUCIR-E-CO-PU-Base-2) make the best performance. Besides, deep
neural features take their advantage in semantic matching combined with tra-
ditional IR features. For example, nERR of RUCIR-E-DE-PU-Base-4 is 0.4602,
while RUCIR-E-DE-PU-Base-1 is 0.4469. It illustrates that both exact matching
and semantic matching contribute to ad-hoc retrieval.

4 Conclusions

The RUCIR team participated in the Chinese and English subtasks of the
NTCIR-14 We Want Web-2 (WWW-2) Task. We applied a learning to rank
framework for both Chinese and English subtasks, and tried to combine deep
neural models with traditional IR models by feature engineering. The experi-
mental results show that traditional features make more contribution than deep

NTCIR-14 Conference: Proceedings of the 14th NTCIR Conference on Evaluation of Information Access Technologies, June 10-13, 2019 Tokyo Japan

487

8 Xue Yang et al.

neural features. We will make further explorations on the performance of deep
neural features in the future work.

Acknowledgements

Zhicheng Dou is the corresponding author. This work was supported by National
Key R&D Program of China No. 2018YFC0830703, National Natural Science
Foundation of China No. 61872370, and the Fundamental Research Funds for
the Central Universities, and the Research Funds of Renmin University of China
No. 2112018391.

References

1. Burges, C.J.: From ranknet to lambdarank to lambdamart: An overview. Learning
11(23-581), 81 (2010)

2. Guo, J., Fan, Y., Ai, Q., Croft, W.B.: A deep relevance matching model for ad-
hoc retrieval. In: Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management. pp. 55–64. ACM (2016)

3. Hiemstra, D.: A probabilistic justification for using tf× idf term weighting in infor-
mation retrieval. International Journal on Digital Libraries 3(2), 131–139 (2000)

4. Hu, B., Lu, Z., Li, H., Chen, Q.: Convolutional neural network architectures for
matching natural language sentences. In: Advances in neural information process-
ing systems. pp. 2042–2050 (2014)

5. Liu, T.Y., et al.: Learning to rank for information retrieval. Foundations and
Trends R© in Information Retrieval 3(3), 225–331 (2009)

6. Luo, C., Zheng, Y., Liu, Y., Wang, X., Xu, J., Zhang, M., Ma, S.: Sogout-16: a
new web corpus to embrace ir research. In: Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
pp. 1233–1236. ACM (2017)

7. Mao, J., Sakai, T., Luo, C., Xiao, P., Liu, Y., Dou, Z.: Overview of the ntcir-14
we want web task. Proceedings of the 14th NTCIR Conference on Evaluation of
Information Access Technologies (2019)

8. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in neural
information processing systems. pp. 3111–3119 (2013)

9. Mitra, B., Diaz, F., Craswell, N.: Learning to match using local and distributed
representations of text for web search. In: Proceedings of the 26th International
Conference on World Wide Web. pp. 1291–1299. International World Wide Web
Conferences Steering Committee (2017)

10. Robertson, S., Zaragoza, H., et al.: The probabilistic relevance framework: Bm25
and beyond. Foundations and Trends R© in Information Retrieval 3(4), 333–389
(2009)

11. Wan, S., Lan, Y., Guo, J., Xu, J., Pang, L., Cheng, X.: A deep architecture for
semantic matching with multiple positional sentence representations. In: Thirtieth
AAAI Conference on Artificial Intelligence (2016)

12. Yang, L., Ai, Q., Guo, J., Croft, W.B.: anmm: Ranking short answer texts with
attention-based neural matching model. In: Proceedings of the 25th ACM inter-
national on conference on information and knowledge management. pp. 287–296.
ACM (2016)

NTCIR-14 Conference: Proceedings of the 14th NTCIR Conference on Evaluation of Information Access Technologies, June 10-13, 2019 Tokyo Japan

488

RUCIR at the NTCIR-14 We Want Web-2 Task 9

13. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied
to information retrieval. ACM Transactions on Information Systems (TOIS) 22(2),
179–214 (2004)

14. Zheng, Y., Fan, Z., Liu, Y., Luo, C., Zhang, M., Ma, S.: Sogou-qcl: A new dataset
with click relevance label. In: The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval. pp. 1117–1120. ACM (2018)

NTCIR-14 Conference: Proceedings of the 14th NTCIR Conference on Evaluation of Information Access Technologies, June 10-13, 2019 Tokyo Japan

489

