

DCU at the NTCIR-14 OpenLiveQ-2 Task

Piyush Arora & Gareth J.F. Jones ADAPT Centre, School of Computing Dublin City University, Ireland {Piyush.Arora,Gareth.Jones}@dcu.ie **Date:** 13th June 2019

Outline

- Task Overview
- Methodology
- Experiments
- Results
- Analysis
- Findings & Future Work

Task Overview

- Task: Rank a list of Japanese language questions matching a user's query
- **Dataset:** Yahoo queries and respective question-answers
- **Goal:** Effectively model information from the user click logs and relevance based metrics

• Evaluation:

- Offline evaluation: metrics such as NDCG, ERR
- Online evaluation: live Yahoo question answering platform

Snapshot

● https://chiebukuro.yahoo.co.jp/search?p=喫煙&flg=3&class=1&ei=UTF-8&fr=common-navi ○ 喫煙 Q **Question and** X Search consultation + Condition specification Smoking 's passive smoking smoking seat smoking office searched Search target I am wondering if I should be a smoker . I am a university student man. Wh... All (198, 221) My surroundings smoke cigarettes anyway. There is a **smoking** area in the university, but even if m Answering received (752) y friend is in the smoking area and smokes, I hate the smell of cigarettes, and I don't like the sidestr Voting Accepted (109) eam smoke, so I don't get into the smoking area, everyone Wait outside until you finish smoking ... Solved (197,360 cases) • 2018/02/24 06:16 • 18Views • 262 Resolved Ways of life and love, troubles in relationships > Love consultation, troubles in relationships order of display I do not know the **smoker** 's feelings at all. If a human being is normal, I nee... Relevancy order Ŧ Smoking is a desire that does not require . Because it looks so cool, it looks so cool, so why not sta rt it? As a result, too high money is paid, breath becomes stinking, aerobic exercise ability is also los t, and unnecessary image down is also caused, and smokers are unconditional ... Notice **D** 2016/11/14 02 **21 O** Resolved 21Views 0 401

Manners, ceremonial occasions > manners > smoking manners

Wisdom bag search RSS function,

Original Japanese page translated using the Google translation

Challenges

- Queries are typically short and ambiguous in nature and might not capture the user's intention effectively
- For example for Japanese query: "喫煙", English translation: "smoking", can have multiple intentions: "dangers of smoking"
 "smoking health effects"
 "mechanism to quit smoking"
- Without understanding the user's intent and focus of the query, it becomes challenging to re-rank the questions
- Aim: Model textual based information and click logs based information to re-rank questions effectively

Learning To Rank Problem

Resources and Tools

- Resources provided by the task organizers:
 - Pipeline for processing Japanese text
 - Pipeline for features extraction
 - Data set and click logs
- Used Lemur RankLib toolkit

• Total of 77 features

8

Features	Features	Question
tf_sum	tf_in_idf_sum &	
log_tf_sum	bm25	Question
norm_tf_sum	log_bm25	Body
log_norm_tf_sum	lm_dir	
idf_sum	lm_jm	Snippet
log_idf_sum	lm_abs	
icf_sum	dlen	Body
log_tfidf_sum	log_dlen	Answer
tfidf_sum		ADP

Click log based features

Features

answer_num

log_answer_num

view_num

log_view_num

is_open

is_vote

is_solved

rank

updated_at

Methodology

• Learning to Rank (L2R) algorithms:

- Coordinate Ascent
- MART
- Feature Selection & Combination:
 - $\circ~$ Alternative combinations of the 5 feature set
- Parameters optimization
- Scores Normalisation:
 - Z-score normalization
 - Score average
 - Max based normalization

	Training set	Test set
Number of Queries	1,000	1,000
Number of Questions	986,125	985,691
Number of click logs	288,502	148,388

Our Submissions

- Total of 14 systems submitted
- Overall 65 participant submissions
- All 65 submissions evaluated & ranked using
 NDCG@10, ERR@10, Q measure
 Phase-1 online evaluation
- Top 30 systems selected for final online evaluation
- 5 of our systems selected in top 30 systems

Results

Overall Results

NDCG@10 = ERR@10 = Q-Measure = Cumulative Gain-1

System Submissions

Top 5 Systems

System - ID

Svstems	ID	NDCG@10	ERR@10	Q-Measure	Online Evaluation Phase-1	Final Online Evaluation
System-2	106	32	24	26	7	7**
System-4	112	36	35	64	8	10
System-5	118	45	38	65	4	6**
System-7	126	34	34	32	14	12
System-12	147	21	23	20	29	23

<u>** No significant differences between the top scored runs using Tukey's HSD tests</u>

Analysis

- Coordinate Ascent algorithm performs relatively better than the Mart algorithm
- Our best system (ID-130) based on NDCG@10 and ERR@10 was ranked "2" and "3" respectively
- Based on Q-scores our best system (ID-123) was ranked "6"
- Based on the cumulative credit our best system (ID-118) was ranked "4" and "6" for online phase-1 and final phase evaluation
- Most of our submissions were heavily tuned to focus on relevance-based features (for e.g BM25 and LM scores)

Findings & Future Work

- Ranking of systems based on the online evaluation metric differed from that for the offline evaluation metrics
- Need for more research to understand the factors behind contrary ranking results arising from the use of online and offline evaluation metrics
- Our best systems in the online phase focused on modelling users click logs
- Future work: explore more effective techniques for the exploitation of user logs and click distributions for ranking questions

DCU at the NTCIR-14 OpenLiveQ-2 Task

Piyush Arora and Gareth J. F. Jones

ADAPT Centre, School of Computing, Dublin City University, Dublin 9, Ireland {piyush.arora,gareth.jones}@dcu.ie

Task Overview

- · Challenge: Rank a list of questions matching a user's query, for Japanese language
- · Goal: Effectively model information from the user dick logs and relevance based metrics
- Evaluation: Offline and Online evaluation

Original Japanese page translated using the Google translation

Main Challenges

- · Queries are typically short and ambiguous in nature and might not capture the user's intention effectively
- · For example for Japanese query: "喫煙", English translation: "smoking" Possible Query Intention-1: "dangers of smoking"
- Possible Query Intention-2: "mechanism to guit smoking" · Complex problem to re-rank the questions without understanding the
- user's intent and focus of the query · Aim: How to model the aspects of textual relevance and information
- gained through used dicked data to retrieve and present the information effectively to a user

Systems Submission & Results

- Submitted 13 systems
- Our 5 systems out of 65 total submissions were selected in top 30 systems to be evaluated in the final phase

Overall Results

Average Best

NDCG@10
 ERR@10
 Q-Measure
 Cumulative Gain-1

128 125 123 152 158 143 130 130 118 112 110 186

System Submissione

ю	NDCG@10	ERR@10	Q-Measure	Credit-Phase-1	Credit-Phase-2
106	32	24	26	7	1
112	36	35	64	8	10
118	45	38	65	- 4	
126	34	34	32	14	12
147	21	23	20	29	23

Our top systems' ranking based on different evaluation metrics

Dataset

Dataset: Yahoo Queries and respective Question-Answers

	Training set	Test s et
Number of queries	1,000	1,000
Number of questions	986,125	985,691
Number of click logs	2 88,502	148,388

Methodology

- Learning to Rank algorithms: Explored L2R algorithms including Coordinate Ascent and MART
- · Feature Selection & Combination: Explored alternative combinations of diverse feature sets capturing relevance of the user query and retrieved ranked list of questions

Type of Features	Features Range
Title Based Textual Features (Title set)	[F1-F17]
Snippet Based Textual Features (Snippet set)	[F 18-F34]
Question Body Based Textual Features (Body set)	[F35-F51]
Body Answer Based Textual Features (Answer set)	[F.52-F68]
Click Log Features (Click set)	[F@-F77]

More detail on the features is provided in the paper

- · Parameter selection: Varied L2R model parameters to learn effective hypothesis functions from the dataset
- Scores Normalisation: The scale of the features (77 features) varies considerably, some features are on logarithmic scales (log-based values), so we perform three scores normalization
- Mean normalization
- Z-score normalization
- Scores average

Analysis

- · Coordinate Ascent algorithm performs' relatively better than the Mart algorithm
- Our best system (ID-130) based on NDCG@10 and ERR@10 was ranked "2" and "3" respectively
- Based on Q-scores our best system (ID-123) was ranked "6"
- and "6" for online phase-1 and final phase evaluation
- relevance-based features such as BM25 and LM scores, measuring the similarity of gueries with a set of guestions to be re-ranked

Findings & Future Work

- · Ranking of systems based on the online evaluation metric contrasted to the offline evaluation metrics
- · Need for more research and focus to understand the main factors behind contrary results ranking using online and offline evaluation metrics
- · Our best systems in the online phase focused on modelling users click logs, thus in the future we would like to explore more effective techniques of modelling user logs and click distributions for ranking questions
- · Need for further investigation to find online and offline evaluation metrics that correlate well in order to address the task of ranking questions

Acknowledgement: We would like to thank the Task Organizers of NTCIR'14 OpenLiveQ-2 and Yasufumi Moriya from the ADAPT centre.

- Based on the cumulative credit our best system (ID-118) was ranked "4"
- · Most of our submissions were heavily tuned to focus on the

@ the Poster Session

More Details

Acknowledgement:

- NTCIR'14 Organizers
- Task Organizers of NTCIR'14 OpenLiveQ-2
- Yasufumi Moriya from the ADAPT centre

