
WIDM @ NTCIR-14 STC-3 Task:
Dialogue Quality and Nugget Detection for Short Text 

Conversation (STC-3) based on Hierarchical Multi-Stack 
Model with Memory Enhance Structure

NATIONAL CENTRAL UNIVERSITY,  TAOYUAN, TAIWAN

AUTHORS :  HSIANG-EN CHERNG AND CHIA -HUI  CHANG

PRESENTER :  HSIANG-EN CHERNG (SEAN)

2019/6/27 1



Outline
1. Introduction

2. Dialogue Quality (DQ) Subtask

3. Nugget Detection (ND) Subtask

4. Conclusion

2019/6/27 2



Introduction
Task Overview – DQ Subtask

Task Overview – ND Subtask

Contribution

2019/6/27 3



Task Overview – DQ Subtask
Goal of DQ
◦ DQ aims to evaluate the quality of a dialogue by three measures (scale: -2, -1, 0, 1, 2)

1) A-score: Task Accomplishment

2) E-score: Dialogue Effectiveness

3) S-score: Customer Satisfaction of the dialogue

Why DQ
◦ To build good task-oriented dialogue systems, we need good ways to evaluate them

◦ You cannot improve dialogue systems if you cannot measure, DQ provides 3 measures

2019/6/27 4



Task Overview – ND Subtask
Goal of ND
◦ ND subtask aims to classify the nugget of utterances in a dialogue 

◦ ND is similar to dialogue act (DA) labeling problem

Why ND
◦ Nuggets may serve as useful features for automatically estimating dialogue quality

◦ ND may help us diagnose a dialogue closely (why it failed, where it failed)

◦ Experiences from ND may help us design effectively and efficiently helpdesk systems

2019/6/27 5

Nugget: purpose or motivation



Contribution
1. We proposed and compared several DNN models based on 

◦ Hierarchical multi-stack CNN for sentence and dialog representation

◦ BERT for sentence representation

2. We compared the models with or without memory enhance

3. We compared simple BERT model with BERT + complex structures model

4. In both DQ and ND, our models result in the best performance comparing 
with organizer baseline models

2019/6/27 6

BERT: An pre-train model based on multiple bi-directional transformer blocks 
(Devlin, J., Chang, M, W., Lee, K., Toutanova, K. 2018)



Dialogue Quality (DQ) Subtask
Model

Experiments

2019/6/27 7



Memory enhanced multi-stack gated CNN (MeHGCNN)
Embedding layer
◦ 100 dimensions Word2Vec

Utterance layer
◦ 2-stack gated CNN learning sentence representation

Context layer
◦ 1-stack gated CNN learning context information 

Memory layer (Memory Network)
◦ Further capture long-range context features

Output layer
◦ Output DQ distribution by softmax

2019/6/27 8



3 techniques we used in our models
1. Multi-stack structure

2. Gating mechanism

3. Memory enhance (memory network)

2019/6/27 9



Multi-stack
Multi-stack structure
◦ Hierarchically capture rich n-gram information 

◦ Window size k and # stacks m can capture m(k-1)+1 words features

2019/6/27 10



Gating mechanism & Memory Enhance Structure
Gating mechanism
◦ Widely used in LSTM and GRU to control the gates of memory states

◦ The idea of gated CNN is to learn whether to keep or drop a feature generated by CNN

◦ Language modeling with gated convolutional networks (Dauphin, Y, N., Fan, A., Auli, M. 2016)

Memory enhance structure
◦ LSTM are not good at capturing very long-range context features

◦ Memory network is applied to our models to get detail context features by self-attention

◦ Memory networks (Weston, J., Chopra, S., Bordes, A. 2015)

2019/6/27 11



Utterance Layer: 2-stack Gated CNN
Utterance layer (UL)

◦ 𝑙 = 1

◦ X𝑖
𝑙 = 𝑤 𝑖,1 ,𝑤 𝑖,2 , … , 𝑤 𝑖,𝑛

◦ 𝑢𝑙A𝑖
𝑙 = 𝐶𝑜𝑛𝑣𝐴 X𝑖

𝑙

◦ 𝑢𝑙B𝑖
𝑙 = 𝐶𝑜𝑛𝑣𝐵 X𝑖

𝑙

◦ 𝑢𝑙C𝑖
𝑙 = 𝑢𝑙A𝑖

𝑙 ⊙𝜎 𝑢𝑙B𝑖
𝑙

◦ X𝑖
𝑙←𝑙+1 = 𝑢𝑙C𝑖

𝑙

◦ 𝑢𝑙𝑖 = 𝑚𝑎𝑥𝑝𝑜𝑜𝑙 𝑢𝑙C𝑖
𝑙 , 𝑠𝑝𝑒𝑎𝑘𝑒𝑟𝑖 , 𝑛𝑢𝑔𝑔𝑒𝑡𝑖

2019/6/27 12

𝑖𝑓 𝑙 ≤ 2

Apply max-pooling to the output of the last stack

1x1 1x7



Context Layer: 1-stack Gated CNN
Context layer (CL)

◦ Conduct the same operations as UL but no additional features 

◦ 𝑐𝑙𝐴𝑖 = 𝐶𝑜𝑛𝑣𝐴 𝑢𝑙𝑖−1, 𝑢𝑙𝑖 , 𝑢𝑙𝑖+1

◦ 𝑐𝑙B𝑖 = 𝐶𝑜𝑛𝑣𝐵 𝑢𝑙𝑖−1, 𝑢𝑙𝑖 , 𝑢𝑙𝑖+1

◦ 𝑐𝑙C𝑖 = 𝑐𝑙𝐴𝑖 ⊙𝜎 𝑐𝑙B𝑖

◦ 𝑐𝑙𝑖 = 𝑚𝑎𝑥𝑝𝑜𝑜𝑙 𝑐𝑙C𝑖

2019/6/27 13

The output of context layer 
for utterance i is 𝒄𝒍𝒊



Memory Layer
Memory layer (ML)

1) Both input memory (𝐼𝑖) and output memory (𝑂𝑖) are generated by BI-GRU from 𝑐𝑙𝑖

◦ Input Memory

◦ 𝐼𝑖 = 𝐺𝑅𝑈 𝑐𝑙𝑖 , ℎ𝑖−1

◦ 𝐼𝑖 = 𝐺𝑅𝑈 𝑐𝑙𝑖 , ℎ𝑖+1

◦ 𝐼𝑖 = 𝑡𝑎𝑛ℎ 𝐼𝑖 + 𝐼𝑖

◦ Output Memory

◦ 𝑂𝑖 = 𝐺𝑅𝑈 𝑐𝑙𝑖 , ℎ𝑖−1

◦ 𝑂𝑖 = 𝐺𝑅𝑈 𝑐𝑙𝑖 , ℎ𝑖+1

◦ 𝑂𝑖 = 𝑡𝑎𝑛ℎ 𝑂𝑖 + 𝑂𝑖

2019/6/27 14

1)

1)



Memory Layer (cont.)
Memory layer (ML)

2) Attention weight is the inner product between 𝑐𝑙𝑖
and 𝐼𝑖 followed by softmax

◦ 𝑤𝑖 =
𝑒𝑥𝑝 𝑐𝑙𝑖∙𝐼𝑖

σ
𝑖′=1
𝑘 𝑒𝑥𝑝 𝑐𝑙𝑖′∙𝐼𝑖′

3) The output of memory layer for 𝑐𝑙𝑖 is the addition 
between weighted sum of 𝑶𝒊 and 𝒄𝒍𝒊

◦ 𝑚𝑙𝑖 = σ𝑖′=1
𝑘 𝑤𝑖′ ∙ 𝑂𝑖′ + 𝑐𝑙𝑖

2019/6/27 15

3)

2)



Output Layer
Output layer

◦ Flatten all utterances vectors

◦ 𝑚𝑙 = 𝑚𝑙1,𝑚𝑙2, … ,𝑚𝑙𝑘

◦ Apply a fully-connected layer with softmax
to output the score distribution as

◦ 𝑓𝑐 = 𝑚𝑙𝑊𝑓𝑐 + 𝑏𝑓𝑐

◦ 𝑃 𝑠𝑐𝑜𝑟𝑒|𝑑𝑖𝑎𝑙𝑜𝑔𝑢𝑒 =
𝑒𝑥𝑝 𝑓𝑐𝑖

σ
𝑖′=1
5 𝑒𝑥𝑝 𝑓𝑐𝑖′

◦ Dimension of 𝑃 𝑠𝑐𝑜𝑟𝑒|𝑢𝑖 is 1x5 since the 
scale of scores are -2, -1, 0, 1, 2

2019/6/27 16



Dialogue Quality (DQ) Subtask
Model

Experiments

2019/6/27 17



Data
Customer helpdesk dialogues
◦ Annotators: 19 students from Waseda university

◦ Validation data is randomly selected 20% from training data

Preprocessing
◦ Remove all full-shape characters

◦ Remove all half-shape characters except A-Za-z!"#$%&()*+,-./:;<=>?@[\]^_`{|}~ ‘

◦ Tokenize by NLTK toolkit (Edward Loper and Steven Bird. 2002)

2019/6/27 18

Data Training Testing

# Dialogues 1,672 390

# Utterances 8,672 1,755



Word Embedding
Embedding parameter
◦ Dimension: 100

◦ Tool: genism

◦ Method: skip-gram

◦ Window size: 5

STC-3 DQ&ND data
◦ Customer helpdesk dialogues

◦ Including train data and test data

2019/6/27 19

Data source # words

text8(wiki) 17,005,208

STC-3 DQ&ND 339,410

Total 17,344,618



Hyper parameters of DQ

Hyper parameters Value

Batch size 40

Epochs 50

Early stopping 3

Optimizer Adam optimizer

Learning rate 0.0005

Multi-stack CNN of UL
• # convolutional layers: 2
• # Filter: [512, 1024]
• Kernel size: 2 & 2

Multi-stack CNN of CL
• # convolutional layers: 1
• # Filter: [1024]

2019/6/27 20



Result of DQ Subtask
◦ MeHGCNN: Our proposed model

◦ MeGCBERT: Replace embedding and utterance layer of MeHGCNN with BERT

◦ BL-BERT: Simple BERT model with only BERT and output layer

2019/6/27 21

Model
(A-score) (E-score) (S-score)

NMD RSNOD NMD RSNOD NMD RSNOD

BL-uniform 0.1677 0.2478 0.1580 0.2162 0.1987 0.2681

BL-popularity 0.1855 0.2532 0.1950 0.2774 0.1499 0.2326

BL-lstm 0.0896 0.1320 0.0824 0.1220 0.0838 0.1310

BL-BERT 0.0934 0.1379 0.0881 0.1344 0.0842 0.1337

MeHGCNN 0.0862 0.1307 0.0814 0.1225 0.0787 0.1241

MeGCBERT 0.0823 0.1255 0.0791 0.1202 0.0758 0.1245

Organizer 
baselines

Ours



Ablation of MeGCBERT for DQ
Gating mechanism & Memory enhance

◦ Well improve A-score & S-score

◦ A little improvement in E-score

2019/6/27 22

Model
(A-score) (E-score) (S-score)

NMD RSNOD NMD RSNOD NMD RSNOD

MeGCBERT 0.0823 0.1255 0.0791 0.1202 0.0758 0.1245

W/o gating mechanism 0.0885 0.1322 0.0813 0.1214 0.0815 0.1289

W/o memory enhance 0.0913 0.1364 0.0808 0.1235 0.0799 0.1273

W/o nugget features 0.0963 0.1388 0.0802 0.1204 0.0774 0.1247

Adding Nugget features
◦ Well improve A-score

◦ A little improvement in E-score



Nugget Detection (ND) Subtask
Model

Experiments

2019/6/27 24



Hierarchical multi-stack CNN with LSTM (HCNN-LSTM)

2019/6/27 25

Embedding layer 

◦ 100 dimensions Word2Vec

Utterance layer

◦ Apply 3-stack CNN to learn sentence 
representation

Context layer

◦ Apply 2-stack BI-LSTM to learn context 
information between utterances

Output layer

◦ Output the nugget distribution by 
softmax



Utterance Layer: 3-stack CNN
Utterance layer (UL)

◦ 𝑙 = 1

◦ X𝑖
𝑙 = 𝑤 𝑖,1 ,𝑤 𝑖,2 , … , 𝑤 𝑖,𝑛

◦ 𝑢𝑙A𝑖
𝑙 = 𝐶𝑜𝑛𝑣𝐴 X𝑖

𝑙

◦ 𝑢𝑙B𝑖
𝑙 = 𝐶𝑜𝑛𝑣𝐵 X𝑖

𝑙

◦ 𝑢𝑙C𝑖
𝑙 = 𝑢𝑙A𝑖

𝑙 , 𝑢𝑙B𝑖
𝑙

◦ X𝑖
𝑙←𝑙+1 = 𝑢𝑙C𝑖

𝑙

◦ 𝑢𝑙𝑖 = 𝑚𝑎𝑥𝑝𝑜𝑜𝑙 𝑢𝑙C𝑖
𝑙 , 𝑠𝑝𝑒𝑎𝑘𝑒𝑟𝑖

2019/6/27 26

𝑖𝑓 𝑙 ≤ 3

1x1

Filter size: 2&3 for convA&convB



Context Layer: 2-stack BI-LSTM & Output Layer
Context Layer (CL)

◦ 𝑐𝑙𝑖
𝑙 = 𝐿𝑆𝑇𝑀 𝑢𝑙𝑖 , ℎ𝑖−1

◦ 𝑐𝑙𝑖
𝑙 = 𝐿𝑆𝑇𝑀 𝑢𝑙𝑖 , ℎ𝑖+1

◦ 𝑐𝑙𝑖
𝑙 = 𝑡𝑎𝑛ℎ 𝑐𝑙𝑖

𝑙 + 𝑐𝑙𝑖
𝑙

◦ 𝑢𝑙𝑖 = 𝑐𝑙𝑖
𝑙

◦ 𝑐𝑙𝑖 = 𝑐𝑙𝑖
𝑙

Output layer

◦ 𝑃 𝑛𝑢𝑔𝑔𝑒𝑡|𝑢𝑖 =
𝑒𝑥𝑝 𝑊𝑐𝑙𝑖

σ
𝑖′=1
𝑘 𝑒𝑥𝑝 𝑐𝑙𝑖′

2019/6/27 27

𝑖𝑓 𝑙 ≤ 2



Nugget Detection (ND) Subtask
Model

Experiments

2019/6/27 28



Hyper parameters of ND

Hyper parameters Value

Batch size 30

Epochs 50

Early stopping 3

Optimizer Adam optimizer

Learning rate 0.0005

Multi-stack CNN
• # convolutional layers: 3
• # Filter: [256, 512, 1024]
• Kernel size: 2 & 3

Multi-stack BI-LSTM
• # BI-LSTM layers: 2
• # hidden units: [1024, 1024]
• Activation function of concatenation: tanh

2019/6/27 29



Result of ND Subtask
◦ HCNN-LSTM: Our proposed model

◦ BERT-LSTM: Replace the embedding layer and utterance layer of HCNN-LSTM with BERT

◦ BL-BERT: Simple BERT + Output layer model

BERT-LSTM outperforms all other models

HCNN-LSTM outperforms NTCIR baselines in JSD

Context layer is important for BERT

◦ JSD drop 0.012 and RNSS drop 0.024 without context layer

2019/6/27 30

Model JSD RNSS

BL-uniform 0.2304 0.3708

BL-popularity 0.1665 0.2653

BL-lstm 0.0248 0.0952

BL-BERT 0.0341 0.1171

HCNN-LSTM 0.0246 0.0962

BERT-LSTM 0.0228 0.0933

Organizer 
baselines

Ours



Ablation & Complex Structure Experiments
Left table shows that both UL and CL are important for ND subtask

Right table shows that both gating mechanism and memory enhance structure 
doesn’t improve the performance
◦ Since the less training data, complex structure might cause overfitting

2019/6/27 31

Model JSD RNSS

BERT-LSTM 0.0228 0.0933

W/o CL multi-stack 0.0246 0.0951

Model JSD RNSS

BERT-LSTM 0.0228 0.0933

W/ gating mechanism 0.0244 0.0960

W/ memory enhance 0.0234 0.0941



Learning Curve of Different Training Data Size for ND

For ND subtask
◦ Both JSD and RNSS reduce when adding % of 

training data until 100%

◦ The tendency shows our model could perform 
better if there is more training data

◦ We do not apply a complex model for ND since the 
lack of training data

2019/6/27 32

0.09

0.1

0.11

0.12

0.13

0.14

0.15

20% 40% 60% 80% 100%

0.02

0.03

0.04

0.05

V
a
li
d

 R
N

S
S

% of Training Data

V
a
li
d

 J
S

D

Learning Curve of ND

Valid JSD Valid RNSS



Conclusion

2019/6/27 33



Conclusion
1. We propose two hierarchical models for DQ and ND subtasks

2. We compare the models w/ & w/o gating mechanism & memory enhance
◦ Both improve the performance of DQ subtask

◦ But drop the performance of ND subtask

3. Data for ND might be insufficient which cause overfitting in complex models

4. We compare sentence representation between BERT and word2vec

5. Our models outperform other organizer baseline models in ND & DQ subtasks

2019/6/27 34



Q&A

2019/6/27 35



Nugget Types for ND
CNUG0: Customer trigger
◦ Problem stated

CNUG*: Customer goal 
◦ Solution confirmed

CNUG: Customer regular
◦ Contains info that leads to solution

CNaN: Customer Not-a-Nugget
◦ Does not contain info that leads to solution

HNUG*: Helpdesk goal
◦ Solution stated

HNUG: Helpdesk regular
◦ contains info that leads to solution

HNaN: Helpdesk Not-a-Nugget 
◦ Does not contain info that leads to solution

2019/6/27 36



Example of ND

2019/6/27 37



Measures of DQ
A-score: Task Accomplishment 
◦ Has the problem been solved? To what extent?

E-score: Dialogue Effectiveness 
◦ Do the utterers interact effectively to solve the problem efficiently?

S-score: Customer Satisfaction of the dialogue 
◦ Not of the product/service or the company

Scale: -2, -1, 0, 1, 2

2019/6/27 38



Related Work
Short Text Conversation (STC)

Word Embedding to BERT

2019/6/27 39



Short Text Conversation (STC)
Traditional mechine learning methods
◦ Hidden Markov Model (Stolcke et al. 2006)

◦ Naïve Bayes (Lendvai and Geertzen 2007) 

Deep learning methods
◦ CNN based & RNN based models (Lee, J, Y., Dernoncourt, F. 2016)

◦ Recurrent convolutional neural networks (Blunsom, P., Kalchbrenner, N. 2013)

◦ LSTM + CRF model (Huang, Z., Xu, W., Yu, K. 2015; Ma, X., Hovy, E. 2016) 

◦ Hierarchical CNN + CNN / Bi-LSTM (Liu, Y., Han, K., Tan, Z., Lei, Y. 2017)

◦ Hierarchical encoder with CRF (Kumar, H., Agarwal, A., Dasgupta, R., Joshi, S., Kumar, A. 2018)

2019/6/27 40



Word Embedding to BERT
Word embedding

◦ Word2Vec (Mikolov, T., Chen, K., Corrado, G., Dean, J. 2013)

◦ Our proposed models apply word2vec with skip-gram algorithm

BERT (Bidirectional Encoder Representations from Transformers)
◦ An pre-train model based on multiple bi-directional transformer blocks

◦ Redefines the state of the art for 11 natural language processing tasks

◦ BERT (Devlin, J., Chang, M, W., Lee, K., Toutanova, K. 2018)

Transformer
◦ Constructed by self-attention and feed-forward neural networks (without any CNN, RNN)

◦ Attention is all you need (Vaswani, A., Shazeer, M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A, N., 
Kaiser, K., Polosukhin, I. 2017)

2019/6/27 41



Two Evaluation Measures of DQ
Normalized Match Distance (NMD)

Cross-Bins Measures

Definition
◦ There are 2 normalized distributions 𝑝, 𝑞

◦ 𝑐𝑝 𝑖 = σ𝑘=0
𝑖 𝑝(𝑘)

◦ 𝑐𝑞 𝑖 = σ𝑘=0
𝑖 𝑞(𝑘)

◦ 𝑀𝐷 𝑝, 𝑞 = σ𝑖 𝑐𝑝 𝑖 − 𝑐𝑞(𝑖)

◦ 𝑁𝑀𝐷 𝑝, 𝑞 =
𝑀𝐷 𝑝,𝑞

𝑙𝑒𝑛𝑔𝑡ℎ−1

Example
◦ 𝑝 = 0,0,1

◦ 𝑞1 = 0.2,0.8,0 , 𝑞2 = 0.8,0.2,0

◦ 𝑐𝑝 = 0,0,1

◦ 𝑐𝑞1 = 0.2,1,1 , 𝑐𝑞2 = [0.8,1,1]

◦ 𝑁𝑀𝐷 𝑝, 𝑞1 =
0.2+1+0

3−1
= 𝟎. 𝟔

◦ 𝑁𝑀𝐷 𝑝, 𝑞2 =
0.8+1+0

3−1
= 𝟎. 𝟗

◦ 𝑞1 is better than 𝑞2

2019/6/27 42



Two Evaluation Measures of DQ (cont.)
Root Symmetric Normalized Order-Aware Divergence (RSNOD)

Cross-Bins Measures consider the distance between a pair of bins

Definition
◦ There are 2 normalized distributions 𝑝, 𝑞

◦ 𝐷𝑊 𝑖 = σ𝑗 𝑖 − 𝑗 𝑝 𝑗 − 𝑞(𝑗) 2

◦ 𝑂𝐷 𝑝, 𝑞 =
1

𝐵∗
σ𝑖∈𝐵∗𝐷𝑊 𝑖 , 𝑩∗ = 𝒊|𝒑 𝒊 > 𝟎

◦ 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑂𝐷 𝑝, 𝑞 =
𝑂𝐷 𝑝,𝑞 +𝑂𝐷 𝑞,𝑝

2

◦ 𝑅𝑆𝑁𝑂𝐷 𝑝, 𝑞 =
𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑂𝐷 𝑝,𝑞

𝑙𝑒𝑛𝑔𝑡ℎ−1

2019/6/27 43

DW: Distance-Weighted sum of squares
OD: Order-Aware Divergence



Two Evaluation Measures of ND
Jensen-Shannon divergence (JSD)

Evaluate the similarity between 2 normalized distributions

Definition
◦ If there are 2 normalized distributions 𝑝, 𝑞

◦ Define 𝑚 =
1

2
𝑝 + 𝑞 (element-wise addition)

◦ 𝐽𝑆𝐷 =
1

2
𝐾𝐿 𝑝,𝑚 + 𝐾𝐿 𝑞,𝑚 with log base = 2

◦ 0 ≤ 𝐽𝑆𝐷 ≤ 1

The lower 𝐽𝑆𝐷 means the similar distributions

2019/6/27 44



Two Evaluation Measures of ND (cont.)
Root Normalized Sum of Squared Errors (RNSS)

Evaluate the similarity between 2 normalized distributions

Definition
◦ If there are 2 normalized distributions 𝑝, 𝑞

◦ 𝑅𝑁𝑆𝑆 =
σ𝑖 𝑝𝑖−𝑞𝑖

2

2

◦ 0 ≤ 𝑅𝑁𝑆𝑆 ≤ 1

The lower 𝑅𝑁𝑆𝑆 means the similar distributions

2019/6/27 45



ND as a traditional sequence labeling problem
ND subtasks take label probability distribution as label
◦ We could only apply softmax layer instead of CRF layer

We consider the ND subtask as a traditional sequence labeling problem 
◦ Convert the label distribution to one-hot labeling

◦ Solve the ND subtask by CRF instead of softmax

◦ Evaluate the performance by precision / recall / f1-score

2019/6/27 46



Preprocessing
Distribution labels -> one-hot labels
◦ Choice the nugget with highest probability as label

For labels with 2 highest probability nuggets
◦ Create 2 one-hot labels for both nuggets as golden answers

2019/6/27 47

Nugget CNUG* CNUG CNaN CNUG0 HNUG* HNUG HNaN

Original Label 0.158 0.421 0.421 0 0 0 0

One-hot Label 1 0 1 0 0 0 0 0

One-hot Label 2 0 0 1 0 0 0 0



ND as sequence labeling Performance
HCNN-BERT outperform HCNN-skipGram in accuracy, macro P and macro F

Accuracy is much more higher than macro P/R/F
◦ Some nugget types are difficult to correctly recognized

2019/6/27 48

Model Accuracy Macro P Macro R Macro F

HCNN-skipGram 88.8% 75.6% 74.8% 75.2%

HCNN-BERT 89.9% 83.4% 74.6% 78.7%



Confusion Matrix

2019/6/27 49

Rows: prediction / Columns: Label

Nugget pairs that are easily confused
◦ [CNUG, CNaN]

◦ [CNUG*, CNUG]

◦ [CNUG*, CNaN]

◦ [HNUG*, HNUG] 

◦ [HNUG, HNaN]

We doubt that whether these pairs are also confused by human

Nugget CNUG* CNUG CNaN CNUG0 HNUG* HNUG HNaN

CNUG* 19 16 10 0 0 0 0

CNUG 9 431 43 1 0 0 0

CNaN 3 23 57 0 0 0 0

CNUG0 0 0 12 374 0 0 0

HNUG* 0 0 0 0 27 14 2

HNUG 0 0 0 0 17 619 31

HNaN 0 0 0 0 0 21 70



Confusion of Human Annotation 
The table shows the avg probability difference of 2 highest nugget of utterances
◦ The higher difference means the higher probability to confused by human

The easily confused nugget pairs of models
◦ [CNUG, CNaN]

◦ [CNUG*, CNUG]

◦ [CNUG*, CNaN]

◦ [HNUG*, HNUG] 

◦ [HNUG, HNaN]

Are also with confused by human 

2019/6/27 50

Nugget pair Avg prob diff # Pairs Pct %

CNUG0, CNUG* 0.842 13 0%

CNUG0, CNUG 0.731 242 3%

CNUG0, CNaN 0.696 1,508 22%

CNUG*, CNUG 0.348 232 3%

CNUG*, CNaN 0.339 36 1%

CNUG, CNaN 0.455 1,793 26%

HNUG*, HNUG 0.307 865 13%

HNUG*, HNaN 0.118 8 0%

HNUG, HNaN 0.401 2,220 32%


