Priberam Labs at the NTCIR-15 SHINRA2020-ML: Classification Task

Rúben Cardoso Afonso Mendes Andre Lamurias

SHINRA2020-ML: Classification Task NTCIR-15

10 December 2020

This work is supported by the Lisbon Regional Operational Programme (Lisboa 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), within project TRAINER (N° 045347).

Introduction							
SHINRA2020-ML: Wikipedia entities classification							

- Categorise Wikipedia entities based on the Extended Named Entity taxonomy
- Problem of multilingual multi-label classification
- We propose 3 models based on Multilingual BERT's (mBERT) embeddings
- Only the first 511 tokens of each Wikipedia page are leveraged



Figure 1: Multilingual BERT provides the contextualised embeddings.

	000				
Linear Classification					

- Linear layer projects mBERT's pooled representation onto the decision space
- Hierarchical structure not explicitly leveraged, only leaf labels are considered

oriberom.

- 3 pooling strategies were tested:
 - Linear+CLS
 - Linear+Mean
 - Linear+Concatenation

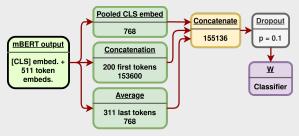


Figure 2: Linear+Concatenation pooling strategy and classifier.

Multi Jovel Hierarchical Classification							
	000						

Multi-level Hierarchical Classification

- Same architecture as Linear+Concatenation
- To leverage hierarchy, gold labels were decomposed into their hierarchical ancestors
- Model learns hierarchical steps that lead to leaf labels

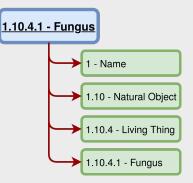


Figure 3: Example of hierarchical decomposition of label.

	Classification Models		
Hierarchical Se	quential Classific	ation	

- Explicitly leverage the ontology's hierarchical structure
- Gated Recurrent Units (GRU) layer sequentially predicts the 4 hierarchical label levels
- At each GRU step, an additional more fine-grained label is predicted
- Pooling strategy: only [CLS] token embedding

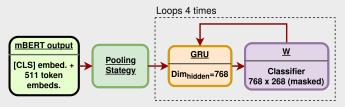


Figure 4: Hierarchical sequential classifier architecture.

	Data •	
Training Data		

- 3.1*M* annotated Wikipedia pages across 13 of the 30 available languages
- Based on total number of annotated pages per language and variability of writing systems.
- Annotated data for 13 languages:
 - English (EN)
 - German (DE)
 - Spanish (ES)
 - French (FR)
 - Italian (IT)
 - Portuguese (PT)
 - Russian (RU)

- Turkish (TR)
- Arabic (AR)
- Chinese (ZH)
- Polish (PL)
- Dutch (NL)
- Korean (KO)

Introduction O		Classification Models		Data O	Results •	Conclusions O
Results						
	LINEAR+	MULTI-LEVEL	GRU+			
	CONCAT	HIERARCHICAL	CLS		LINEAR+CONCAT	GRU+CLS
EN	0.739	0.713	0.707	EN	0.8012	0.8127 (5th)
ES	0.744	0.739	0.751	ES	0.8072 (5th)	0.8030
FR	0.726	0.696	0.735	FR	0.7852 (3rd)	0.7793
DE	0.758	0.743	0.720	DE	0.7983	0.8024 (5th)
ZH	0.735	0.598	0.754	ZH	0.7937 (3rd)	0.7838
RU	0.745	0.723	0.730	RU	0.8308 (2nd)	0.8260
PT	0.699	0.703	0.710	PT	0.8188	0.8236 (2nd)
IT	0.711	0.702	0.734	IT	0.8189	0.8192 (4th)
AR	0.683	0.678	0.702	AR	0.7545	0.7627 (1st)
TR	0.732	0.711	0.699	TR	0.8323	0.8436 (5th)
NL	0.724	0.738	0.729	NL	0.8126 (5th)	0.8095
PL	0.766	0.701	0.722	PL	0.8346 (5th)	0.8273
KO	0.746	0.721	0.738	KO	0.8104	0.8151 (5th)

CS

NO

-

-

 Table 1: Micro F1 scores for the leaderboard set.

-

-

 Table 2: Micro F1 scores evaluated on the official test set.

CS

NO

0.692

0.717

0.692

0.700

0.8119 (5th)

0.7839 (5th)

Conclusions		

- Models based on Multilingual BERT achieve very good performance across languages, even under a zero-shot paradigm
- Linear+Concatenation and GRU+CLS yield the best results with very similar performances

Thank you!

