TUA1 at the NTCIR-15 DialEval Task

Xin Kang*, Yunong Wu**, Fuji Ren*

*Tokushima University

**CDXT medical technology

- Introduction
- Dialogue Quality Prediction Network
- Nugget Detection Network
- Loss Functions
- Experiment
- Conclusions

- Introduction
- Dialogue Quality Prediction Network
- Nugget Detection Network
- Loss Functions
- Experiment
- Conclusions

Introduction

- DialEval-1 of NTCIR-15
 - Chinese dialogue quality (DQ) subtask
 - Chinese nugget detection (ND) subtask
- To evaluate customer-helpdesk dialogue automatically
- Challenges:
 - Speaker identities should be learned to promote the dialogue understanding.
 - How to incorporate these speaker identities into the dialogue evaluation?
 - Loss function: regression or others...

- Introduction
- Dialogue Quality Prediction Network
- Nugget Detection Network
- Loss Functions
- Experiment
- Conclusions

Dialogue Quality Prediction Network

Structure

- Pre-trained BERT Network
 - takes in a sequence of tokens and generates a sequence of feature vectors
- Bi-LSTM Network
 - adds the speaker identity embeddings to the BERT output and ingetrates them bi-directionally
- Self-Attention Network
 - summarize the input feature vectors into several compact feature vectors by different attentions
- Feed-forward Network
 - concat the attentional outputs and generate predictions over the dialogue qualities

Figure 1: The structure of dialogue quality prediction (DQP) network.

Dialogue Quality Prediction Network

Identifying Speakers in Dialogue

- The dialogues are split by turns.
- Each turn contains one or more utterances.
- We combine multiple utterances into one long utterance.
- Speakers are encoded into o's and i's and duplicated into vectors.

Figure 2: The process of model input for a raw dialogue.

Dialogue Quality Prediction Network

Incorporating Speaker Identities into Network

- Speaker identities are embedded and added to the BERT outputs
- Feed them into Bi-LSTM to integrate the sequential information.
- Self-attention

$$attn_{-}w^{(i)} = softmax \left(\frac{W_a^{(i)} * I_{Bi-LSTM}}{\sqrt{L}} \right)$$

$$attn_{-}v^{(i)} = attn_{-}w^{(i)} * I_{Bi-LSTM}$$

$$O_{Self-Atten} = Concat(attn_{-}v^{(0)}, ..., attn_{-}v^{(h)})$$

Figure 3: The process of self-attention.

- Introduction
- Dialogue Quality Prediction Network
- Nugget Detection Network
- Loss Functions
- Experiment
- Conclusions

Nugget Detection Network

Structure

- Pre-trained BERT Network
- Bi-LSTM Network
- Self-Attention Network
- Feed-Forward Network
- Differences to the dialogue quality prediction network:
 - No speaker identifiers in the input
 - Multiple nugget detections in the output

Figure 4: The structure of nugget detection (ND) network.

- Introduction
- Dialogue Quality Prediction Network
- Nugget Detection Network
- Loss Functions
- Experiment
- Conclusions

Loss Functions

- Dialogue quality (DQ) subtask
 - Mean squared error loss function (\bar{y} for the ground truth distributions and \hat{y} for the model predicted distributions, $\kappa \in \{A, S, E\}$):

$$loss(\bar{y}, \hat{y}) = \sum_{\kappa \in \{A, S, E\}} \frac{1}{n} \sum_{i=1}^{n} (\bar{y}_i^{\kappa} - \hat{y}_i^{\kappa})^2$$

• Sinkhorn divergence loss function (y for the set of ground truth labels and \tilde{y} for the set of generated samples, $\kappa \in \{A, S, E\}$):

$$loss(y, \tilde{y}) = \sum_{\kappa \in \{A, S, E\}} \frac{1}{n} \sum_{i=1}^{n} Div(y_i^{\kappa}, \tilde{y}_i^{\kappa})$$

- Nugget detection (ND) subtask
 - Mean squared error loss function (y for the ground truth distributions and \hat{y} for the model predicted distributions, $\kappa \in \{\text{CNUGo}, \text{HNUG}, \text{CNUG}, \text{HNUG}^*, \text{CNUG}^*, \text{CNAN}, \text{HNAN}\})$

$$loss(y, \hat{y}) = \sum_{\kappa \in \Gamma} \frac{1}{n} \sum_{i=1}^{n} (y_i^{\kappa} - \hat{y}_i^{\kappa})^2$$

- Introduction
- Dialogue Quality Prediction Network
- Nugget Detection Network
- Loss Functions
- Experiment
- Conclusions

Experiment

Submitted RUNs

- For dialogue quality (DQ) subtask
 - RUNo: DQP network with the mean squared error loss
 - RUN1: DQP network with the Sinkhorn divergence loss for single-label probabilities
 - RUN2: DQP network with the Sinkhorn divergence loss for multi-label probabilities
- For nugget detection (ND) subtask
 - RUNo: ND network with the mean squared error loss

Experiment

Results

RUN	Mean RSNOD	Mean NMD
0	0.2136	0.1396 ⁽²⁾
1	0.2484	0.1510
2	$0.2102^{(1)}$	0.1412

Table 1: The A-score Results for Chinese Dialogue Quality Prediction.

RUN	Mean RSNOD	Mean NMD
0	0.1615 ⁽¹⁾	0.1144 ⁽¹⁾
1	0.1810	0.1253
2	0.1617	0.1187

Table 3: The E-score Results for Chinese Dialogue Quality Prediction.

RUN	Mean RSNOD	Mean NMD
0	0.2053	0.1322
1	0.2302	0.1397
2	0.2024	0.1310

Table 2: The S-score Results for Chinese Dialogue Quality Prediction.

Run	Mean JSD	Mean RNSS
0	0.0859	0.1892

Table 4: The Results for Chinese Dialogue Nugget Detection.

- Introduction
- Dialogue Quality Prediction Network
- Nugget Detection Network
- Loss Functions
- Experiment
- Conclusions

Conclusions

- Two neural network models for the Chinese dialogue quality (DQ) and nugget detection (ND) subtasks.
- Main contributions:
 - Speaker identities are employed to promote the dialogue understanding.
 - Speaker identities are embedded and incorporated into the network.
 - We propose a new loss function for dialogue quality prediction.
- Future work:
 - Other loss functions to improve the ordinal regression results.

Thank you for your attention!