JRIRD at the NTCIR-15 QA Lab-PoliInfo-2 Task:

An Abstractive Dialog Summarization System for Japanese Assembly Minutes

Kazuma Kadowaki

The Japan Research Institute, Limited

Abstract

I developed a system for topic-aware summarization of assembly member speeches. It consists of:

- (1) a pre-processor
- (2) a BERT-based sentence extractor (that predicts a topic-aware importance of each sentence); and
- (3) a UniLM-based summary generator (whose summary length is controllable).

My model achieved the best performance among all the participants in the Dialog Summarization subtask.

INTRODUCTION

Purpose

Generate a *topic-aware* short summary of Tokyo Metropolitan Assembly minutes, in order to fact-check and to understand speakers' policies

Task

Input: speaker's name, entire speech, topic, desired length Output: a topic-aware summary of the speech

Challenges

- Very long, multiple-topic speeches
- Minutes without annotation (not segmented, no importance scores)
- · Maximum numbers of characters specified for each summary

MY APPROACH

Retrieves an entire "source speech"

Sentence Extractor

 Extracts a "source passage" by predicting ROUGE-1 scores using BERT-based regression

Summary Generator

 Generates an abstractive summary from the passage using UniLM (modified to control the length)

Generated Summary

RESULTS

Models submitted

- ID 185: trained only using the datasets from the task organizers
- ID 189: trained also using my own dataset from different years

Results

- · Achieved better performance in most of the metrics
- · Adding my dataset further contributed to the performance

			Content			V	Well- Nor		า-twi	-twisted		Sente	nce	Dia	log	
		X =	2	X	= 0	fo	rmed		All	ΙE	valua	ble	goodn	ess	good	ness
ID 18	5	<u>1.014</u>		0.900		1.830			1.220		1.581		1.042		0.848	
ID 18	9	1.082		0.975		1.858			1.316		1.712		1.129		0.937	
Baseline (0.74	748		0.671		1.582		1.011		1.658		0.730		0.4	88
		Recall					F-measure									
			N1	N2	N3	N4	L	SU4	W1.2	N1	N2	N3	N4	L	SU4	W1.2
0	ID 18	35 C	0.503	0.221	0.134	0.087	0.415	0.252	0.199	0.373	30.158	0.096	0.061	0.30	30.174	0.193
Surface	ID 18	39 0).517	0.241	0.146	0.093	0.429	0.267	0.206	0.387	70.175	0.106	0.069	0.31	70.188	0.202
Form	Basel	ine C	0.405	0.130	0.076	0.046	0.338	0.169	0.160	0.308	30.099	0.058	30.036	0.25	30.123	0.159
	ID 18	35 0	0.511	0.224	0.137	0.091	0.421	0.258	0.202	0.379	0.161	0.098	0.064	0.30	80.178	0.196
Stem	ID 18	39 0).526	0.247	0.152	0.098	0.437	0.277	0.210	0.394	10.180	0.110	0.073	0.32	30.194	0.206
	Basel	ine C	.425	0.144	0.087	0.055	0.355	0.185	0.171	0.323	30.109	0.066	0.042	0.26	60.134	0.169
Content	ID 18														20.091	
Word	ID 18	39 0).321	0.149	0.077	0.034	0.302	0.171	0.192	0.237	70.109	0.056	0.027	0.22	20.106	0.172
vvoru	Basel	ine C).244	0.105	0.051	0.024	0.233	0.123	0.150	0.18	50.079	0.038	30.019	0.17	70.080	0.139

DISCUSSIONS

Performance of each module

 Each module extracted 51.7% and 75.7% of the available content words successfully

Text	Output by		Characters per summary	
Source speech	Pre-processor	0.818	4,895.59	
Source passage	Sentence extractor	0.423	117.65	
Generated summary	Summary generator	0.320	57.76	
Reference summary	-	-	38.69	

Model generalization

- Robust enough for changes in topics discussed
- · Future work: Mitigate/detect performance degradation

Human evaluation

- · No system seems to be always helpful to fact-check
- Future work: Revise the task settings

	Content	Well-formed	Non-twisted	Sentence goodness	Dialog goodness
Grade A	29.7%	88.0%	60.5%	42.8%	29.3%
Grade B	38.0%	9.8%	10.6%	27.3%	35.0%
Grade C	26.9%	2.2%	28.9%	29.9%	35.6%
Grade X	5.3%				

CONCLUSIONS

Contributions

- I developed an assembly minutes summarizer, which consists of a BERT-based extractor and a UniLM-based generator
- My models achieved the best performance, and would generalize for future meetings
- · The length of a generated summary can be controlled

Future work

- · Add a mechanism to consider a context
- Apply my models to other real-world tasks (including business conversations)
- · Revise the task settings for fact-checking
- Investigate summarization from noisy minutes generated by ASR systems