

THUIR at the NTCIR-15 Micro-activity Retrieval Task

Jiayu Li, Ziyi Ye, Weizhi Ma, Min Zhang, Yiqun Liu, and Shaoping Ma

Tsinghua University

Understanding Tasks: 2 in 1

Overall Framework

I. Feature Extraction — (1) Visual & OCR Features

I. Feature Extraction — (2) Temporal Features

Electro-oculography

	Feature	Dimension		
	Photo	4180	values, LPC	
	Screenshot	1	nt, number of	
Acceleration and hea	EOG	62		
∧ z	Acceleration	523		
Y X	Heart rate	26		
	Mouse Movement	14		
	User id	1		
Mouse movements	All	4806	lues, energy of	
	₹ <u>.</u>	different	frequency bands	
	o de Freemenov	34		

II. Feature Selection

III. Ranking Model

IV. Classification Models — (1)Basic Classifier

Parameter based Classifier

Tree + Boosting

			r
Classifier	Accuracy	mAP(classify)	mAP(ranking)
LR	0.825	0.899	0.898
SVM	0.821	0.875	0.848
MLP	0.811	0.890	0.910
Random Forest	0.779	0.869	0.927
XGboost	0.826	0.882	0.921
GBDT	0.836	0.901	0.947
Multi-level classifier of tree structure		Tree perfo	structure classifiers orm better at ranking

IV. Classification Models — (2)Rules Detection (20)(12) 6) (13) (14) (17) (19) Partition Activity (17

Partition Method	Group 1	Group 2	Group 3	Group 4
Impurity	1,2,3,11,12	4, 16	others	-
Similarity	1,3	2, 11, 12	4, 16	others
Cluster	1,3,5,6,8,10	2,4,11,12,16	7,9,13,14,15	17,18,19,20

1, 2, 3, 11, 12 : Screen relevant activities

4, 16: Static activities (Zoning out & Close eyes)

IV. Classification Models — (3)Rule-based Classifier

V. Results

Classifier	Accuracy	mAP (classify)	mAP (ranking)	Submission results
Basic GBDT Classifier	0.836	0.901	0.947	0.895
Similarity-based method	0.789	0.843	0.836	0.782
Two-level Classifier	0.875	0.921	0.971	0.901
(Impurity partition)	0.873			
Two-level Classifier	0.875	0.926	0.970	0.928
(Similarity partition)	0.075			
Two-level Classifier	0 706	0.880	0.931	0.886
(Cluster partition)	0.790			
Rule-based Classifier	0.889	0.933	0.974	0.950

Similarity based methods: Repetition of micro activity is unstable. Rule-based Classifier: Knowledge about activities helps classification and ranking.

Takeaways

- ✦ Micro-activity is detectable
- ✦ Activity retrieval task is equivalent to classification task
- ✦ Performing Feature selection is better than nothing
 - ✦ Any methods for feature selection performs better than origin features.
- ✦ Multi-level classifier is effective for MART
- ✦ Rule detection based on activity partition does help.
- Decision tree and tree structure methods are efficient.

THANKS FOR YOUR ATTENTION ! Any Questions?

My email: jy-li20@mails.tsinghua.edu.cn