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ABSTRACT
The ESTUCeng team participated in the English subtask of the We
Want Web Task (WWW-3) [30]. This paper describes our approach
to tackle the ad-hoc Web search problem and discusses the results.
We used LambdaMART, a learning to rank algorithm, to re-rank
samples generated by LanguageModeling with Dirichlet smoothing.
We extracted several traditional features adopted from the literature
as well as a family of new HTML document quality features for
the ClueWeb12-B13 dataset. The traditional features are augmented
with the newly proposed features. Then, we used feature selection
to obtain an optimum subset of features that would produce the
highest retrieval effectiveness. The query relevance judgements of
the NTCIR-13 We Want Web-1 [21] and the NTCIR-14 We Want
Web-2 [25] are used as training data. The novel document quality
features (type-D) proved to be useful in achieving a competitive
retrieval effectiveness for the ClueWeb12-B13 dataset.
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1 INTRODUCTION
The ESTUCeng team participated in the English subtask of the
NTCIR-15 WWW-3 Task [30] by applying a learning to rank ap-
proach. Learning to rank is the application of machine learning to
the document ranking problem. Thus, feature engineering is a key
component of learning to rank since instances are represented by
features. Therefore, many studies introduce several Query-Dependent
(QD) and Query-Independent (QI) features in addition to the stan-
dard set of features (the features that the most commonly used
datasets contain [28]) to achieve better retrieval effectiveness. We
implemented existing features and proposed a new set of QI features.
We used Language Modeling with Dirichlet smoothing (LM.DIR)
[35] to obtain the sample, which is then re-ranked by LambdaMART
∗The novel document quality features experimented in this work are stemmed from
Ahmet Aydın’s ongoing PhD thesis and have not been published before.

[8]. We submitted three runs with different subsets of features. The
following sections describe our methodology in detail and discuss
our submission results.

2 LEARNING TO RANK METHODOLOGY
In this section, we briefly describe our methodology on building a
learning to rank model on the training set and using it to re-rank
the test set.

A learning to rank framework requires a sampling stage in both
learning a model (training) and applying the learned model (testing)
[24]. The sample is obtained by a static term-weighting model such
as BM25. The term-weighting model used in sampling is called
sample model or reference model [20].

2.1 Sampling (top-k retrieval)
For learning to rank, usually BM25 is used for sampling [24]. How-
ever, in this study for the selection of the sample model we ex-
perimented with 8 different term-weighting models: BM25 [29],
DFIC [18], DFRee [2], LM.DIR [35], DLH13 [22], DPH [1], LGD [10],
PL2 [3]. We use the default values of the hyper-parameters of the
models if any.

We also created three indices of the ClueWeb12-B13 dataset for
evaluating the effectiveness of two different stemming algorithms:
KStem [19] and Porter Stemming [27].

We used top-k=1000 as the sample size. Our training query set is
comprised of 180 queries from the previous two NTCIR We Want
Web English subtasks [21, 25].

To select one out of 24 combinations we used a specific effective-
ness metric as given by Eq. 1 to quantify the fraction of explicitly
judged documents retrieved by the minimum of the number of
documents retrieved and the value of 𝑘 . We could use “the total
number of judged documents” in the denominator of the equation,
however this would not affect the relative ranking of the sample
models.

Unlike the conventional effectiveness measures (e.g., Recall, MAP
[7], nDCG [17], ERR [9], etc), this metric takes into account the
documents judged as non-relevant by assessors. We choose to op-
timize this metric for the selection of the term-weighting model
because we believe that a learning to rank method may produce bet-
ter results when the training data include non-relevant documents
as well as relevant documents. In other words, explicitly judged
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Table 1: The effectiveness scores (as measured by the fraction of explicitly judged documents in the top-k=1000 documents
retrieved) of stemming algorithms and term-weighting models in descending order for the WWW-1 and WWW-2 query sets.
The value in boldface, attained by LM.DIR with KStem, presents the highest score.

Sample Model NoStem KStem Porter

LM.DIR (𝜇=2500) 0.1953 0.2269 0.2137
DFIC 0.1800 0.2052 0.1962
LGD (𝑐=1.0) 0.1710 0.1937 0.1845
DPH 0.1695 0.1898 0.1798
DFRee 0.1673 0.1875 0.1779
PL2 (𝑐=1.0) 0.1623 0.1833 0.1773
DLH13 0.1637 0.1823 0.1730
BM25 (𝑘=1.2, 𝑏=0.75) 0.1566 0.1750 0.1684

non-relevant documents might be useful in the sample list that is
to be used in learning a re-ranking model. Recall that documents
that are not explicitly judged in the sample list are assumed as non-
relevant during training. However, these documents might well be
relevant. This is a known limitation of the reusability of standard
information retrieval benchmark datasets [5, 6].

Table 1 presents effectiveness scores of 24 different combinations.
Themaximum score is attained by LM.DIRwith KStem combination;
thus, we retrieved our top-k documents by applying LM.DIR to the
WWW-1 and WWW-2 English query sets on the ClueWeb12-B13
collection indexed with KStemming employed. To test our approach,
we applied the same combination (LM.DIR+KStem) to the WWW-3
English topics on the same collection.

It is interesting to note that although BM25 is usually preferred
as the reference model in the literature, it is the worst when our
metric is optimized. In other words, LM.DIR returns more explicitly
judged (either relevant or non-relevant) documents in the result
list than BM25. This observation calls attention to further inves-
tigation of the role of sample model in learning to rank settings.
What is the ideal criterion for the selection of the sample model:
Is it a list-based metric (nDCG@1000, nDCG@20) or a set-based
metric (Recall@1000 or P@1000)? Would different learning to rank
algorithms benefit from different selection criteria? To our best
knowledge, these questions are still unanswered.

Effectiveness =
# 𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝑙𝑦 𝐽𝑢𝑑𝑔𝑒𝑑 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

min{𝑘 = 1000, # 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑} (1)

2.2 Feature Extraction
We examined previous learning to rank studies to gather as many
features as possible. Many of the studies experiment on standard
datasets such as LETOR [28] and MSLR [28], while some others
[4, 37] introduce additional features to improve the retrieval effec-
tiveness. The complete list of features used in this study is listed
below. We use the categorization scheme proposed in [20], which
categorizes features into three classes: (i) query features (Type-Q),
(ii) query-document pair features (Type-QD) and (iii) document fea-
tures (Type-D). Table 2 presents existing features introduced in the
literature. We also introduced novel document quality indicators
as Type-D features. Table 3 presents our introduced features.

2.3 Feature Selection
We extracted all features for query-document pairs on training data,
which is described in Section 2.1 to obtain the training set. Our
learning to rank setup is described as follows. We used 5-fold cross
validation on training set by 3 fold for training, 1 fold for testing and
1 fold for validation. Then we used the JForests1 implementation
of LambdaMART [8] for training and obtaining prediction scores.
We re-ranked our sample by prediction scores and evaluated our
results by calculating nDCG@10 with gdeval2.

We applied heuristic feature selection methods and eliminated
some of the features on the training set to improve the retrieval
effectiveness. First we obtained the ablation scores for each fea-
ture in the full feature set (𝐹 ). A feature ablation score of 𝑓𝑖 is the
nDCG@10 score of 𝐹 − 𝑓𝑖 . Then we applied the following methods
to obtain the best subset of features.

1- Add one feature at a time to an empty set by ablation score
(ascending sorted) and pick the subset of features with the best
nDCG@10 score.

2- Ablate one feature at a time from the full feature set by ablation
score (descending sorted). If the current nDCG@10 score of the
subset is less than the previous subset then skip the feature.

2.4 Runs and Evaluation
We submitted 3 runs for the English subtask. We extracted the
features described and selected the best subsets of features based
on methods in Section 2.3. Then we submit our 3 runs, based on
the following 3 feature selection methods that produce promising
results on the WWW-1 and WWW-2 English tracks.

ESTUCeng-E-CO-NEW-1 : Features are selected based on Method
2 in Section 2.3. Similarity features in Table 3 are calculated by
cosine similarity.

ESTUCeng-E-CO-NEW-2 : Features are selected based on Method
2 in Section 2.3. Similarity features in Table 3 are calculated by
semantic similarity [32].

ESTUCeng-E-CO-NEW-3 : Features are selected based on Method
1 in Section 2.3. Similarity features in Table 3 are calculated by
semantic similarity [32].

Table 4 presents our offline evaluation results on the training
set. ESTUCeng-E-CO-NEW-1 produces the best results by selecting
1https://code.google.com/archive/p/jforests/
2https://trec.nist.gov/data/web/12/gdeval.pl
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Table 2: Existing Features.

Feature Type Feature Name

Type-Q WordCount, Gamma, Omega, AvgPMI, SCS [15, 16]
Type-Q Mean and Variance of IDF, CTI, Skewness, Kurtosis, SCQ [15, 16, 36]
Type-QD TF Sum, Min, Max, Mean, Variance for 5 fields [28]
Type-QD TF-IDF Sum, Min, Max, Mean, Variance for 5 fields [28]
Type-QD Sum, Min, Max, Mean, Variance of term counts divided by text length [28]
Type-QD BM25, DFIC, DFRee, DLH13, DPH, LGD, PL2, LM.JM, LM.ABS, LM.DIR for 5 fields [23, 24, 28]
Type-QD Covered query term number [28]
Type-QD Covered query term ratio [28]
Type-QD Minimum coverage, in the title of the document, of all query terms [12]
Type-QD Minimum coverage, in the body of the document, of all query terms [12]
Type-D Number of child pages, Inlink count, Outlink count, PageRank [28]
Type-D SpamScore [11]
Type-D Entropy, URL Depth, Average term length, Fraction of anchor text, Fraction of table text, Number of title terms,

Stopword coverage, Stopword ratio, Text/Document length [4]
Type-D URLWiki [24]
Type-D CDD [37]

Table 3: Introduced Features.

Feature Type Feature Name Feature Type Feature Name

Type-D (Boolean) Contact Info Type-D The mean of boolean features
Type-D (Boolean) Content Length over 1800 words Type-D Fraction of images with alt tag text to all images
Type-D (Boolean) Copyright Type-D Number of words in content
Type-D (Boolean) Description Type-D Fraction of number of words in headings to number of words in content
Type-D (Boolean) Favicon Type-D Number of images
Type-D (Boolean) Https Type-D The minimum of the indices of keywords in title
Type-D (Boolean) Keywords Type-D Fraction of (innerlink – outlink) to all links
Type-D (Boolean) Keywords in Domain Type-D URL length
Type-D (Boolean) Keywords in First 100 words Type-D Number of MetaTags
Type-D (Boolean) Keywords in image alt tag text Type-D Fraction of no-follow links to all links
Type-D (Boolean) Keywords in title Type-D Similarity of description and headings
Type-D (Boolean) Robots.txt Type-D Similarity of description and content
Type-D (Boolean) Social media share Type-D Similarity of description and keywords
Type-D (Boolean) Viewport Type-D Similarity of description and title

Type-D Similarity of title and content
Type-D Similarity of title and headings
Type-D Similarity of title and keywords
Type-D Similarity of content and headings
Type-D Similarity of content and keywords
Type-D Similarity of keywords and headings

all features in Table 2 and Table 3 except the variance of Kurtosis.
It is interesting that ESTUCeng-E-CO-NEW-3 yields effectiveness
scores close to ESTUCeng-E-CO-NEW-1 by eliminating 43 features
(41 of them are in Table 2). It should be noted that ESTUCeng-E-
CO-NEW-1 and ESTUCeng-E-CO-NEW-3 use different methods
(Method 2 and Method 1 in Section 2.3, respectively) on selecting
the best feature subsets. It should also be noted that ESTUCeng-E-
CO-NEW-1 keeps the initial order of features while ESTUCeng-E-
CO-NEW-3 re-orders features by ablation scores.

Figure 1 shows a comparison of ESTUCeng-E-CO-NEW-3 vs.
LM.DIR and LTR-with-Standard-Features using the offline evalua-
tion. In LTR-with-Standard-Features, we re-rank LM.DIR samples
by LambdaMART using the features listed in Table 2. The figure
empirically implies that the application of LambdaMART using ex-
isting features in the literature improves the retrieval effectiveness
of LM.DIR term-weightingmodel. It also implies that LambdaMART
augmented with our proposed query-independent features further
improves the effectiveness at all cut-off values of nDCG systemati-
cally.
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Table 4: The results for the WWW-1 and WWW-2 English query sets.

Run nDCG@10 nERR@10

ESTUCeng-E-CO-NEW-1 0.35955 0.47492
ESTUCeng-E-CO-NEW-2 0.34136 0.44820
ESTUCeng-E-CO-NEW-3 0.35847 0.47583

Figure 1: The comparison of ESTUCeng-E-CO-NEW-3 vs.
LM.DIR and LTR-with-Standard-Features.
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Figure 2 shows the per-query nDCG@10 score differences be-
tween LTR-with-Standard-Features and ESTUCeng-E-CO-NEW-
3 using the offline evaluation. LTR-with-Standard-Features out-
performs ESTUCeng-E-CO-NEW-3 on 39% of the total queries,
while ESTUCeng-E-CO-NEW-3 outperforms LTR-with-Standard-
Features on 54% of the total queries when the cut-off value of nDCG
is set to 10. As noted by Peng et al. [26] not all queries equally benefit
from the application of document prior features.

Figure 2 is also useful for evaluating the robustness of ESTUCeng-
E-CO-NEW-3 with respect to LTR-with-Standard-Features. A sys-
tem can be better than another on the average but it can cause
abject failures for some topics. A robust system should satisfy each
and every information need at least at a reasonable level [13, 34].
Considering only the delta between two values can hide important
details, as illustrated in Figure 2. Although it is common practice to
compare retrieval systems by averaging the system-query scores
as in Figure 1, per-query comparison of systems provides insight
into the reliability [14] of systems.

Figure 2: The per-query score differences betweenLTR-with-
Standard-Features and ESTUCeng-E-CO-NEW-3.
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3 RESULTS
Table 5 presents our English subtask results for the WWW-3 task.
ESTUCeng-E-CO-NEW-1 and ESTUCeng-E-CO-NEW-3 results are
close to each other while ESTUCeng-E-CO-NEW-2 results are ap-
parently worse. According to the overview paper [30], there is no
significant differences between our runs except ESTUCeng-E-CO-
NEW-2 which is significantly worse than the rest (Also ESTUCeng-
E-CO-NEW-2 results are worse than the BM25-baseline results
provided by the organizers). Our best run (ESTUCeng-E-CO-NEW-
3) is significantly better than 11 runs, while it outperforms 28 runs
by nDCG scores.

4 DISCUSSION
We believe that neither web search nor learning to rank is a solved
problem. The real web search employed by commercial search en-
gines (e.g. Google) has many challenges that are difficult to simulate
in the test collection based evaluation (i.e. the Cranfield paradigm
[33]) of information retrieval systems [31]. Spam scores, anchor
text, link graphs and HTML parsing are just the tip of the ice-
berg. Crawlers and searchers operate in real-life settings deal with
crawl frequency, multi language web sites, 404 not found pages,
load time, dwell time, content farming, high ad-to-content ratio
pages, disavowing manipulative backlinks, generating rich snippets,
accelerated mobile pages and so on.

Feature engineering for learning to rank is not solved either.
Many features are just derivatives of each other. Especially a feature
calculated for a word is aggregated for the query. Recall that a query
is usually comprised of more than one word. Simple aggregation
methods such as the minimummaximum average variance are used.
But their meaning is unclear. What is the meaning of the maximum
BM25 score of a query on the title field? This is indeed something
difficult to interpret by a human. Furthermore, the mean length of
typical Web search queries is 3-5 words. The aggregation statistics
average and variance might not be meaningful for such a few data
points.

5 CONCLUSIONS
We participated in the English subtask of the NTCIR-15 WWW-3
task [30] as ESTUCeng team. We introduced a novel set of QI fea-
tures to quantify the HTML document priors, the probability that
the document is relevant to any query [26], for the ClueWeb12-
B13 dataset. The traditional features gathered from the existing
learning to rank literature are augmented with the newly proposed
features. We used different subsets of features, obtained by different
feature selection methods, for our runs. The novel document prior
features introduced in this paper proved to be useful in achieving a
competitive retrieval effectiveness for the NTCIR-15 WWW-3. Fur-
thermore, results show that a learning to rank system may re-rank
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Table 5: Results of the NTCIR-15 WWW-3 according to the overview paper [30].

Run nDCG@10 Q@10 nERR@10 iRBU@10

ESTUCeng-E-CO-NEW-1 0.6508 0.6638 0.7597 0.9163
ESTUCeng-E-CO-NEW-2 0.4991 0.5051 0.6524 0.8677
ESTUCeng-E-CO-NEW-3 0.6537 0.6644 0.7561 0.9161

documents poorly with the wrong features. Figure 2 reveals that al-
though ESTUCeng-E-CO-NEW-3 outperforms LTR-with-Standard-
Features on the average, it produces less effective results on the 39%
of total queries. As a future work, we will investigate a selective
retrieval approach that predicts the queries that will benefit from
the application of our newly proposed document prior features.
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