
LIAT Team’s Extractive Summarizer
at NTCIR-15 QALab PoliInfo-2

Kouta Nakayama
RIKEN AIP, Japan

kouta.nakayama@riken.jp

Satoshi Sekine
RIKEN AIP, Japan

satoshi.sekine@riken.jp

ABSTRACT
This is the report of the summarization system that our team LIAT
submitted to the dialog summarization task in NTCIR-15 QALab
PoliInfo-2. We designed an extractive summarizer by dividing the
task into three parts and training a model for each. Analysis from
the scores showed that the line level extractive summarizer that we
created did not suit the task.

TEAM NAME
LIAT

SUBTASKS
QALab PoliInfo-2 (Dialog summarization task)

1 INTRODUCTION
NTCIR-15 QALab PoliInfo-2[2] is a shared task that deals with
political documents in Japan. The dialog summarization task we
participated in is a task to parse and summarize the dialogue struc-
ture of local councils. For more information on the task, see the
PoliInfo-2 organizer’s paper[2]. Note that the formal submission
was found to contain a bug, so this paper describes the content
of the late submission. Therefore, there are no manual evaluation
results.

2 SYSTEM DESCRIPTION
We created three models, border detector, topic matcher and sum-
marizer, to solve the task. We use BERT[1] for those models. We
explain the role of those models below.

2.1 Border Detector
The dialogue summarization task needs to detect a range of question
or answer sentences at first. The border detector estimates the range
of question or answer sentences by determining their boundaries.
A boundary line is predicted by a binary classification of whether
the boundary line is between two sentences. The training data for
border detectors is generated from segmented training data. The
segment boundaries are treated as positive and the line boundaries
inside the segment as negative. We sampled up to two boundaries
from inside each segment to avoid bias towards negative examples.
Sentence 1 and sentence 2 are combined with a special token as
follows and passed to BERT.

[CLS] Sentence 1 [SEP] Sentence 2 [SEP]

BERT then predicts whether the sentence boundary is the be-
ginning or end of the question or answer from the output cor-
responding to the [CLS] token. In more detail, we have linear

layers of 𝑓𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔_𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 , 𝑓𝑒𝑛𝑑_𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 , 𝑓𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔_𝑎𝑛𝑠𝑤𝑒𝑟 , and
𝑓𝑒𝑛𝑑_𝑎𝑛𝑠𝑤𝑒𝑟 , each of which is connected to the output of BERT for
binary classification.

2.2 Topic Matcher
The topic matcher matches segments and subtopics. We use seg-
mented training data for training, which is positive if the segment
is about a subtopic and negative otherwise. BERT will be passed the
subtopic and the beginning and end of the segment as following.

[CLS] Sub topic [SEP] Beginning of the segment [SEP]
End of the segment [SEP]

If the input length is exceeded, we cut out the beginning and
end of the segment appropriately. BERT predicts from the output
corresponding to [CLS] whether a segment is valid for a given
subtopic or not. BERT predicts whether a segment corresponds to a
given subtopic. Specifically, we connect a linear layer 𝑓𝑏𝑐_𝑡𝑝 to the
output of BERT for binary classification. Let us denote the output
of BERT for [CLS] token as 𝑥𝑐𝑙𝑠 . We get the final output using the
softmax function 𝑓𝑠𝑜 𝑓 𝑡 as follows.

𝑃𝑟 (𝑦 |𝑥𝑐𝑙𝑠 ) = 𝑓𝑠𝑜 𝑓 𝑡 (𝑓𝑏𝑐_𝑡𝑝 (𝑥𝑐𝑙𝑠 ))
Since more than one segment may be assigned for a subtopic, we
select one where 𝑃𝑟 (𝑦 = 1|𝑥𝑐𝑙𝑠 ) is higher than the threshold 𝑡 . If no
segment exceeds the threshold, then the segment with the largest
𝑃𝑟 (𝑦 = 1|𝑥𝑐𝑙𝑠 ) is applied.

2.3 Summarizer
We create an extraction summarizer at the line level. Therefore, it is
necessary to identify the training data lines in advance that could
be the answer. We took the line that shares the most nouns with
the gold summary as the correct answer. Also, we used the results
of the topic matcher on the unsegmented training data as training
data. The characteristics of a sentence that could be a summary
may be very different for a question and an answer. Therefore, we
trained a different summarizer with questions and answers. We
define the input to BERT as follows. Herein, the number of lines 𝑛
to be passed simultaneously is determined by the maximum input
length of BERT.

[CLS] Sub topic [SEP] [Mask] Line 1 [MASK] Line 2
... [MASK] Line n [SEP]

We get prediction results for [MASK] tokens placed in front of
each line. Specifically, we connect the common linear layer 𝑓𝑏𝑐_𝑠
for binary classification to the outputs of BERT, which correspond
to each [MASK] token. Let 𝑥𝑚𝑎𝑠𝑘𝑖 be the prediction of BERT for

NTCIR 15 Conference: Proceedings of the 15th NTCIR Conference on Evaluation of Information Access Technologies, December 8-11, 2020 Tokyo Japan

175



Hyperparameter

Epoch 10
Batch size 32
Gradient accumulation steps 1
Sequence length 512

Weight decay 0.01
Max grad norm 1.0
Hidden dropout 0.3
Attention dropout 0.1

Optimizer Adam
Learning rate 5e-5
Adam beta 1 0.9
Adam beta 2 0.999
Adam eps 1e-6

Table 1: Common hyperparameters.

the [MASK] token connected to line 𝑖 . Using the softmax function
𝑓𝑠𝑜 𝑓 𝑡 , the final output is obtained as follows.

𝑃𝑟 (𝑦𝑖 |𝑥𝑚𝑎𝑠𝑘𝑖 ) = 𝑓𝑠𝑜 𝑓 𝑡 (𝑓𝑏𝑐_𝑠 (𝑥𝑚𝑎𝑠𝑘𝑖 ))
We use the threshold as well as the topic matcher to select the
outputs, as we allow multiple lines to be a summary.

3 EXPERIMENTS
3.1 Data Preprocessing
We use MeCab[3] to tokenize the corpus. And, we use Juman[4] as
a dictionary for MeCab. During tokenization, we also collect the
nouns that are used to create training data for summarizer.

3.2 Experimental settings
We use the pre-trained parameters1 for BERT. We used the hyper-
parameters in Table 2 for training unless mentioned otherwise and
train the models with mixed precision floating point arithmetic
[5]. We used the minutes of two meetings with recent dates in the
segmented data as development data.

Topic Matcher. We set the batch size to 𝑏 = 128 and the thresh-
old for output selection to 𝑡 = 0.9.

Summarizer. We set the batch size to 𝑏 = 8 and the threshold
for output selection to 𝑡 = 0.5.

3.3 Results
We present our results with the development data in Table1. We see
that the border detector and the topic matcher score are relatively
high. In other words, our system seems to be able to handle data that
doesn’t have segments. However, the summarizer scores are quite
low. Because the summary lines are identified by noun matching
with each gold summary, they may contain a lot of noise. Given
that segmentation is working well, perhaps we should create a
generative summarizer.

The scores on the leader board are shown in Table 3. ROUGE-1-R
is a macro average of the content words. JRIRD is the best result
1We selected a model that does not use BPE. https://alaginrc.nict.go.jp/nict-
bert/index.html

Model Precision Recall F1

Border detector 0.928 0.967 0.947
Topic matcher 0.915 0.874 0.894
Summarizer (question) 0.594 0.632 0.612
Summarizer (answer) 0.607 0.591 0.599

Table 2: Scores on development data.

System ROUGE-1-R

JRIRD (formal submission) 0.321
Ours (late submission) 0.095

Table 3: Scores on leader board.

on the leaderboard and seems to be a generative summary. Our
summarizer is greatly inferior. Line level extractions are likely to
contain irrelevant parts and are likely to have lower scores.

4 CONCLUSIONS
This paper describes the system submitted to PoliInfo-2. Analysis
from the scores shows that line level extractive summarizers do
not seem to match the task very well. Future research will include
detailed analysis and the creation of a generative summarizer.

REFERENCES
[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[2] Yasutomo Kimura, Hideyuki Shibuki, Hokuto Ototake, Yuzu Uchida, Keiichi Taka-
maru, Madoka Ishioroshi, Teruko Mitamura, Masaharu Yoshioka, Tomoyoshi
Akiba, Yasuhiro Ogawa, Minoru Sasaki, Kenichi Yokote, Tatsunori Mori, Kenji
Araki, Satoshi Sekine, and Noriko Kando. 2020. Overview of the NTCIR-15 QA
Lab-PoliInfo-2 Task. Proceedings of The 15th NTCIR Conference (12 2020).

[3] Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto. 2004. Applying Conditional
Random Fields to Japanese Morphological Analysis. In Proceedings of the 2004
Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, Barcelona, Spain, 230–237. https://www.aclweb.org/
anthology/W04-3230

[4] S. KUROHASHI. 1994. Improvements of JapaneseMorphological Analyzer JUMAN.
Proceedings of The International Workshop on Sharable Natural Language, 1994
(1994), 22–28. https://ci.nii.ac.jp/naid/10027016015/

[5] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich
Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. 2018. Mixed Precision Training. In International Confer-
ence on Learning Representations. https://openreview.net/forum?id=r1gs9JgRZ

NTCIR 15 Conference: Proceedings of the 15th NTCIR Conference on Evaluation of Information Access Technologies, December 8-11, 2020 Tokyo Japan

176

https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/W04-3230
https://www.aclweb.org/anthology/W04-3230
https://ci.nii.ac.jp/naid/10027016015/
https://openreview.net/forum?id=r1gs9JgRZ

