Overview of the NTCIR-16 Data Search 2 Task

Makoto P. Kato (University of Tsukuba), Hiroaki Ohshima (University of Hyogo), Ying-Hsang Liu (Oslo Metropolitan University), Hsin-Liang Chen (Philadelphia College of Osteopathic Medicine), Yu Nakano (University of Tsukuba)

Introduction

- The open data movement is now being accelerated by the expectations for open science and citizen science
 - -Each country strongly encourages the open data movement:
 - Data.gov (United States)
 - Data.gov.uk (United Kingdom)
 - Data.gov.au (Australia)
 - e-Stat (Japan)
- Besides the governmental portals, there are also thousands of data repositories on the Web

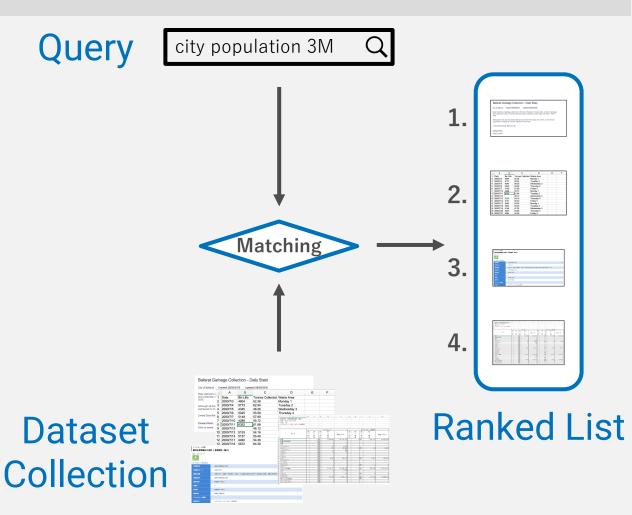
Demand for a better data search engine

The very first IR evaluation campaign for data search

	Documents (or <i>datasets</i>)	46,615
	Training queries	96
English	Test queries	96
	Relevance judgments for training queries	2,008
	Relevance judgments for test queries	6,240
	Documents (or <i>datasets</i>)	1,338,402
	Training queries	96
Japanese	Test queries	96
	Relevance judgments for training queries	2,035
	Relevance judgments for test queries	5,719

Ad-hoc retrieval for statistical data

Subtasks


-English and Japanese

• Input

-96 queries for each of the subtasks

Document (or Dataset) collection

- Data.gov for English
- -e-Stats for Japanese
- Output
 - Ranked list of datasets for each query

Q1. What techniques were potentially effective?

 Not very conclusive, but possibly neural models and table understanding

Q2. What queries were difficult in dataset retrieval?

• Time-related queries are especially difficult

Q3. Is the topic variability large?

• Yes, it is much larger than the system variability

The second round of the "Data Search" task with more queries

	Documents (or <i>datasets</i>)	46,615
	Training queries	192
English	Test queries	58
	Relevance judgments for training queries	8,248
	Relevance judgments for test queries	6,550

	Documents (or <i>datasets</i>)	1,338,402
	Training queries	192
Japanese	Test queries	72
	Relevance judgments for training queries	7,754
	Relevance judgments for test queries	4,035

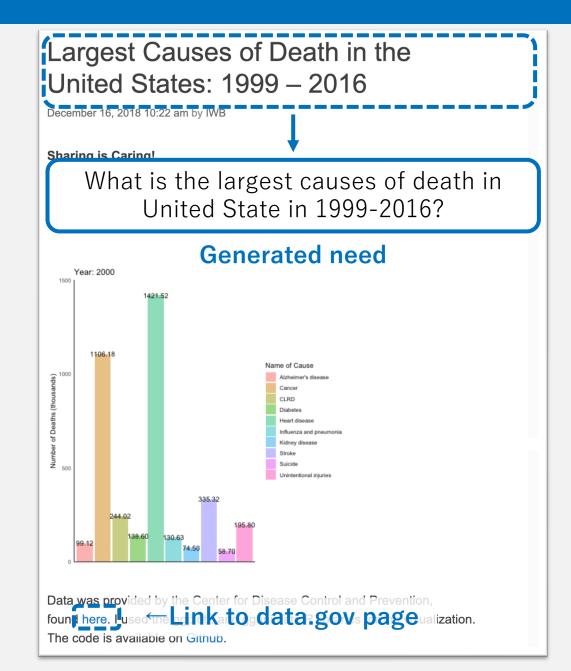
IR Subtask

-Given a query and a dataset collection, a system is expected to generate a ranked list of datasets.

•QA Subtask

-Given a question and a dataset, a system is expected to generate an answer to the question, mainly by extracting a part of the dataset.

• UI Subtask


-Participants are expected to develop a search system with an effective search interface for dataset search tasks.

NTCIR-15 Data Search

 Information needs were derived from questions in cQA

NTCIR-16 Data Search 2

- Information needs were derived from webpages referring to a dataset
 - Parsed Common Crawl webpages (~ 25B)
 - Identified 47,242 URLs including "data.gov" and 137,388 URLs including "stat.go.jp".
- Manually extracted a potential need from the webpages

Generating Queries

- Used crowd-sourcing services to convert information needs to queries
 - -Showed a need and asked workers to input a query without looking at the need
 - Tried to simulate a more realistic situation
 - -Selected the most "probable" query from 10 workers' queries
 - Built a unigram language model from those queries, and selected the one with the highest perplexity with respect to the language model

(a-	
ての作業を確認することはできません。プレビューは一部の作業のみ確認する事ができます。	
<u>次の作業</u> ▶	
索用キーワードの作成作業	
情報を知りたがっている人,もしくは,ある疑問を解決したい人の要望が以下に提示されます. 人のために,グーグルやヤフーなどで検索をするための検索キーワードを考えて入力してくださ	
まず『質問・要望』をよく読んで理解してください. 画を下の方にスクロールさせると『検索キーワード入力欄』がありますので,グーグルやヤフー	
にして「質問・要望」を見ながら検索キーワードをご自身で考えて入力してください。 とこで検索をするための検索キーワードをご自身で考えて入力してください。 として「質問・要望」を見ながら検索キーワードを入力しないでください。コピー&ペーストも厳	
示される「質問・要望」の例:「千葉県では日本一落花生がとれますか?」	
いる「 検索キーワード」 の例:「千葉県 落花生 生産量」	
R示される「質問・要望」の例:「最近、東京都内ではどれくらいマンションが増えているのでし	
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
Rして「質問・要望」を見ながら検索キーワードを入力しないでください.コピー&ペーストも厳 tです.	
数単語を入力する場合には空白(スペース)で区切ってください 回分の検索用のキーワードを入力してください、2回に渡って検索することを前提としてないでく	
ito.	
]· 要望	
都道府県別の有効求人倍率をおしえてください。	Ν

検索キーワード

ID	Need	Query
DS2-E-0001	What is the largest causes of death in United State in 1999-2016?	causes of death us 1999-2016
DS2-E-0004	How much is the tuition fee at a private elementary school?	tuition fee private elementary school
DS2-E-0005	Are there hospital differences across the US states?	us states hospital differences

- See the tutorial given by Prof. Sakai[†]
 - -Computed the residual variance of nDCG@10 based on the NTCIR-15 Data Search results
 - -The minimum topic size * is
 - •n = 36 for English runs
 - •n = 68 for Japanese runs

http://sakailab.com/download/ ← → C @ 2019 Data from Sakai's SIGIR 2019 Paper (Which Diversity Evaluation Measures Are "Good"?) Data from Sakai's CLEF20 book chapter: How to Run an Evaluation Task 2018 akai SIGIR 2018: Conducting Laboratory Experiments Properly with Statistical Tools: An Easy Hands-on Tutorial (includes the five excel files listed below besides other mate NA2.xlsx for computing topic set sizes to achieve high statistical power for one-way ANOVA (recommended: See Sakai's book) SAMPLECI.xlsx for computing topic set sizes to achieve a tight confidence interval for paired data (recommended: See Sakai's book) esize2SAMPLET.xlsx for computing topic set sizes to achieve high statistical power for the two-sample t-test sizeTTEST2.xlsx for computing topic set sizes to achieve high statistical power for the paired t-test Use this tool even amplesizeCI2.xlsx for computing topic set sizes to achieve a tight confidence interval for unpaired data if you're interested in the

† Sakai. Laboratory Experiments in Information Retrieval: Sample Sizes, Effect Sizes, and Statistical Power. 2018. $* \min D = 0.05, m = 10, \alpha = 0.05, and \beta = 0.20$

English

- -Data.gov
 - <u>https://www.data.gov/</u>
 - •46,615 (~445GB)

- Japanese
 - -e-Stat
 - <u>https://www.e-stat.go.jp/</u>
 - •1,338,402 (~100GB)

データセット情報

作物統計調査 / 作況調査(水陸稲、麦類、豆類、かんしょ、飼料作物、工芸農 作物) 速報 令和元年産一番茶の摘採面積、生葉収穫量及び荒茶生産量(主産 県)

表示・ダウンロード 上 EXCEL

<<u> データセット一覧に戻る</u>

政府統計名	作物統計調査	0
政府統計コード	00500215	
調査の概要	本調査は、毎年、耕地の状況、収穫量等を調査し、耕地面積、農 作物の作付面積、収穫量、被害面積・被害量等を、全国、都道府 県(主産県)別等に提供しています。	
提供統計名	作物統計調査	
提供分類1	作況調査(水陸稲、麦類、豆類、かんしょ、飼料作物、工芸農作物)	
提供分類2	速報	
提供分類3	令和元年産一番茶の摘採面積、生葉収穫量及び荒茶生産量(主産	

Examples of Datasets

Ballarat Garbage Collection - Daily Stats

City of Ballarat / Created 25/05/2015 / Updated 28/05/2015

Daily statistics of garbage collection in the City of Ballarat. Includes date, number of garbage bins collected, tonnes of waste collected, area of collection. Date range July 2000 - March 2015

Although all due care has been taken to ensure that these data are correct, no warranty is expressed or implied by the City of Ballarat in their use.

Linked Data Rating: ★ ஹ்ஹ் 🕐

Contact Point:

Click to reveal

	A	В	С	D	E	F
1	Date	Bin Lifts	Tonnes Collected	Waste Area		
2	2000/7/3	4804	52.38	Monday 1		
3	2000/7/4	5773	62.94	Tuesday 2		
4	2000/7/5	4345	48.26	Wednesday 3		
5	2000/7/6	5025	55.58	Thursday 4		
6	2000/7/7	5148	57.80	Friday 5		
7	2000/7/10	4288	55.72	Monday 1		
8	2000/7/11	6352	61.88	Tuesday 2		
9	2000/7/12		48.12	Wednesday 3		
10	2000/7/13	5153	54.16	Thursday 4		
11	2000/7/14	5137	55.40	Friday 5		
12	2000/7/17	4940	54.38	Monday 1		
13	2000/7/18	5872	64.38	Tuesday 2		
14	2000/7/19	4188	47.02	Wednesday 3		
15	2000/7/20	5057	54.26	Thursday 4		
16	2000/7/21	5063	54.38	Friday 5		

データセット情報 農林水産物輸出入統 表示・ダウンロード と、 EXCEL	計 / 貿易統計(輸入)	
政府統計名	晨林水産物輸出入統計	0
政府統計コード	00500100	
調査の概要	本統計では、財務省「貿易統計」を基に、主な農林水産物の品目別・国別輸出入数量、金額を毎月提供しています。	
提供統計名	農林水產物輸出入統計	
提供分類1	貿易統計(輸入)	
表番号	2	
表分類	貿易統計(輸入)	
統計表名	農産物 (農産品)	
データセットの概要		
表名区分1	とうもろこし(とうもろこし飼料用)	

	А	В	С	D	Е	F	G	Н	Ι	J	К
1	報告書名:財務省貿易統計(輸入)										
2	年次:令.元(2019)										
3	月次:7月										
4	とうもろこし、内とうもろこし飼料用										
5											
6											
7					とうもろこし				内と	とうもろこし飼料用	
	1	第	第	第	第		第	第	第	第	
	国名	_	-	_	Ξ.		_	_	=	<u> </u>	
		単	数	単	数	金額(千円)	単	数	単	数	金額(千円)
8		位	量	位	量		位	量	位	量	
9	世界	125.4		0 MT	1, 239, 883	29, 127, 675	1.00.0	36	0 MT	818, 171	19,063,495
	中華人民共和国	∲ → →		0 MT	1, 235, 665	25,121,015			U m1	010, 171	15,003,455
	台湾	t i		0 MT	0	0			-		
	91			0 MT	0	0					
	インドネシア			0 MT	64	3,003					
	インド			0 MT	532	28,835			0 MT	84	8,610
	バングラデシュ			0 MT	2	452					
	ベルギー			0 MT	24	795					
17	フランス			0 MT	0	0					
18	ドイツ			0 MT	0	0					
19	イタリア			0 MT	0	0					
	ロシア			0 MT	5,841	144, 147			0 MT	5,841	144, 147
	オーストリア			0 MT	0	0					
	ハンガリー			0 MT	0	0					
	ルーマニア			0 MT	0	0					
	ウクライナ			0 MT	0	0			0 MT	0	0
	カナダ			0 MT	0	0					
	アメリカ合衆国	+ +		0 MT	1, 170, 711	27, 547, 370			0 MT	756, 728	17, 674, 351
	~~~			0 MT	8	1, 589					
	チリ	+		0 MT	0	0			0.000		
	プラジル	+		0 MT	1	312			0 MT	0	0
	パラグアイ	+		0 MT	0	0			OUT	55 510	1 000 007
	アルゼンチン	+		0 MT 0 MT	62,700	1,401,172			0 MT 0 MT	55, 518	1, 236, 387
	南アフリカ共和国	+		0 MT	0	0			UMI	0	0
	オーストラリア ニュージーランド	+ +		0 MT	0	0					
34	ニューンーフント			UMI	0	0					

# "Dataset" is a unit of retrieval in Data Search

Metadata

-Consists of metadata and multiple data files

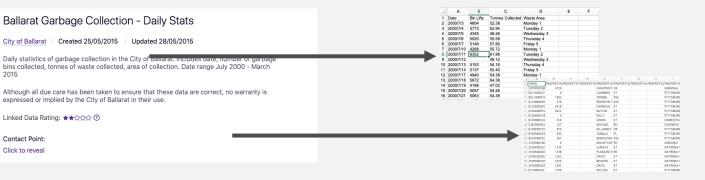
Data.gov

 Multiple data files for each metadata

•e-Stat

- A data file for each metadata

#### Metadata データセット情報 食料需給表 / 確報 平成16年度食料需給表 表示・ダウンロード XCE < データセット一覧に戻る 政府統計名 食料需給表 6 政府統計コード 00500300 調査の概要 本統計では、穀類等の品目別の国内生産量、輸出入量、国内消費 仕向量、1 人当たり供給純食料、食料自給率等を毎年提供してい ます。 提供統計名 食料需給表 提供分類1 確報


平成16年度食料需給表

提供分類2

### Data file

(1) 自約	合率の推進	多																	
① 品目	別自給率	の推移																	
品	Н	昭 和 35年度	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	5
*		102	95	98	95	94	95	101	116	118	117	106	100	100	101	102	110	100	1
うち主食用																			
小麦		39	43	38	17	28	28	21	20	20	14	9	8	5	4	4	4	4	
大麦		104	89	85	60	58	57	56	50	46	38	28	23	14	8	9	8	8	
裸麦		112	89	90	28	119	123	90	92	115	98	73	73	64	87	111	98	87	
大・裸麦計		107	89	87	51	70	73	65	59	60	48	34	29	18	10	11	10	9	
雑穀		21	15	11	9	6	5	3	3	2	2	1	1	1	1	1	1	0	
いも類		100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	99	98	
かんしょ		100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	1
ばれいしょ		101	101	101	100	100	100	100	100	100	100	100	100	100	100	100	99	98	
でんぷん		76	76	71	85	72	67	56	55	56	44	41	36	36	30	23	24	29	
豆類		44	42	35	31	23	25	19	20	17	14	13	11	13	11	11	9	8	
大豆		28	25	21	17	13	11	9	8	7	5	4	4	4	3	4	4	3	
その他の豆	類	90	90	76	74	58	70	57	72	61	56	65	49	67	60	59	45	42	
野菜		100	100	100	100	100	100	100	100	100	100	99	99	99	98	98	99	98	
果実		100	98	97	92	90	90	89	89	88	85	84	81	81	83	83	84	81	
みかん		111	113	111	109	109	109	107	109	105	106	105	106	103	104	104	102	103	1
りんご		102	102	102	101	102	102	102	102	103	102	102	101	101	101	100	100	100	1
肉 稻		93	95	95	90	92	93	91	86	85	85	89	84	82	80	84	76	75	

### Data files



### Relevance Judgments

- The relevance of each dataset for a given query is judged by crowd-sourcing workers
  - -0: Not-relevant
  - -1: Partially relevant
  - -2: Highly relevant
- Inter-rater agreement
  - (measured by Krippendorff's  $\alpha$ )
  - -English: **0.444**
  - -Japanese: **0.474**

(Fairly consistent with those of NTCIR-15)

### Instructions

Please judge how useful a **DATASET** of a webpage is for answering a given **REQUEST**. Please carefully read a given **REQUEST**, visit a webpage describing a **DATASET**, and give a usefulness score (0, 1, or 2) to each of the datasets.

### Rules

- 1. Carefully read a REQUEST (Note: this page contains a few types of requests.)
- 2. Make sure that you visit a webpage that describes a **DATASET**, and judge how useful the **DATASET** is for answering the **REQUEST**.
- 3. Usefulness score is defined as:
  - 0: (Useless) The DATASET is not useful to answer the REQUEST at all, or was not accessible for some reasons.
  - 1: (Partially useful) The DATASET is useful to partially answer the REQUEST, but cannot fully answer the REQUEST.
  - 2: (Highly useful) The DATASET is useful to fully answer the REQUEST.

### Cautions

- You will be rejected if the website is not accessed.
- You will be rejected if the work time is too short.
- There are some **REQUEST** and **DATASET** for which a true usefulness score is known.
   You will be rejected if your answer is very different from the true answer.
- You will be rejected if your work result has been rejected before.
- 1.

REQUEST: Do people in the East Coast dislike oysters?

#### DATASET: LINK

O 0: Useless O 1: Partially useful O 2: Highly useful

### **Baseline Methods**

# Applied standard retrieval models to only the metadata



# Baseline retrieval models

- BM25, BM25 + RM3, BM25 + SDM, BM25 + BM25PRF
- Query Likelihood, Query Likelihood + RM3, Query Likelihood + SDM

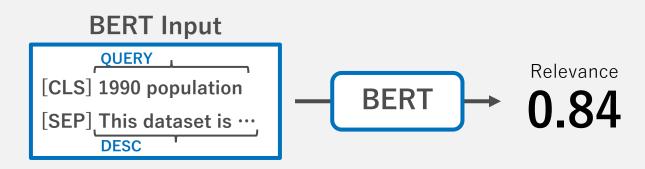
- NTCIR-16 Data Search attracted seven research groups and received 48 systems' results in total
  - -Including the organizers' team for providing baseline runs
  - -25 for English and 23 for Japanese

# Participants

- -UHGSIS: University of Hyogo
- -STIS: Politeknik Statistika STIS
- -WUT21: Wuhan University of Technology
- -KSU: Kyoto Sangyo University
- -NYUCIN: Universidade Federal de Pernambuco
- -OUHCIR: The University of Oklahoma

Run ID	Description	Data	Neural	Entity	Num.
KSU-E-1	Category+Table Clipping+Table Header+BERT+MLP	Y	Y	Y	Ν
KSU-E-3 Data	(14/e48inguns) der + BERT + MLP	Y	Y	Y	Ν
	(Lff/effQing-Ubb)/ader+BERT+MLP	Y	Y	Y	N
KSU-E-7	Table Header+BERT+MLP	Ý	Y	Ý	N
KSU-E-9 • WK NYUCIN-E-1	ether the data files are used	Ý	N	Y N	N N
	-bm25arf+bm25	N	N	N	N
OR • E-E-2Neu	ral (22/48 runs):	N	N	N	N
ORGE-E-3	bm25.accurate	N	N	N	N
ORGE-E-4 Wh ORGE-E-5	ether neural language models (e.g., BERT) are used	Ν	Ν	Ν	Ν
ORGE-E-5		Ν	Ν	Ν	Ν
ORGE-E-6	y (10/48 runs):	Ν	Ν	Ν	Ν
	y (10/48 runs):	N	N	N	N
		N	N	N	N
OUHCIR-E-1 OUHCIR-E-2	ether entities are treated differently from the other tokens	N	Ý	N	N
		N	Y N	N	N
	. (0/48 runs): Adjusted	N N	N	IN NI	N N
OUHCIR-E-5	BM25 and TEIDE WEIGHT ADJUSTED	N	N	N	N
		N	N	N	N
OUHCIR-E-7	ether numbers are treated differently from the other tokens	N	N	N	N
OUHCIR-E-8		N		N	N
			N		
STIS-E-1 STIS-E-2		Y Y	Ý	N	N N
wut21-E-1	prop+bert_score LM Jelinek Mercer		r N	N	N
			I N	I N	

### Participants' Runs (English subtask)


Run ID	Description	Data	Neural	Entity	Num.
KSU-E-1	Category+Table Clipping+Table Header+BERT+MLP	Y	Y	Y	Ν
KSU-E-3	Category+Table Header+BERT+MLP	Y	Y	Y	Ν
KSU-E-5	Table Clipping+Table Header+BERT+MLP	Y	Y	Y	Ν
KSU-E-7	Table Header+BERT+MLP	Y	Y	Y	Ν
KSU-E-9	Category+Table Header+BM25	Y	Ν	Y	Ν
NYUCIN-E-1	BM25 and BERT	Y	Y	N	N
ORGE-E-1	bm25prf+bm25	N	Ν	Ν	Ν
ORGE-E-2	bm25	Ν	Ν	Ν	Ν
ORGE-E-3	bm25.accurate	Ν	Ν	Ν	Ν
ORGE-E-4	sdm+qld	Ν	Ν	Ν	Ν
ORGE-E-5	rm3+bm25	N	Ν	Ν	Ν
ORGE-E-6	qld	N	Ν	Ν	Ν
ORGE-E-7	sdm+bm25	N	Ν	Ν	Ν
ORGE-E-8	rm3+qld	N	Ν	Ν	Ν
OUHCIR-E-1	BM25 and TFIDF WEIGHT ADJUSTED and Sentence Transformer	Ν	Y	Ν	Ν
OUHCIR-E-2	BM25 and TFIDF WEIGHT ADJUSTED and Sentence Transformer	Ν	Y	Ν	Ν
OUHCIR-E-3	BM25 and TFIDF WEIGHT ADJUSTED	Ν	Ν	N	Ν
OUHCIR-E-4	BM25 and TFIDF WEIGHT ADJUSTED	Ν	Ν	Ν	Ν
OUHCIR-E-5	BM25 and TFIDF WEIGHT ADJUSTED	Ν	Ν	Ν	Ν
OUHCIR-E-6	BM25 and TFIDF WEIGHT ADJUSTED	Ν	Ν	Ν	Ν
OUHCIR-E-7	DOC2VEC	Ν	Ν	Ν	Ν
OUHCIR-E-8	DOC2VEC	Ν	Ν	Ν	Ν
STIS-E-1	prop+bert_score+bm25	Y	Y	N	Ν
STIS-E-2	prop+bert_score	Y	Y	Ν	Ν
wut21-E-1	LM Jelinek Mercer	Y	Ν	N	Ν

### Participants' Runs (Japanese subtask)

Run ID	Description	Data	Neural	Entity	Num.
KSU-J-10	Category+Table Header+BM25	Y	N	Y	N
KSU-J-2	Category+Table Header+BERT+MLP	Y	Y	Y	N
KSU-J-4	Category+Table Header+BERT+MLP	Y	Y	Y	N
KSU-J-6	Table Clipping+Table Header+BERT+MLP	Y	Y	Y	Ν
KSU-J-8	Table Header+BERT+MLP	Y	Y	Y	Ν
ORGJ-J-6	qld	Ν	Ν	Ν	Ν
ORGJ-J-1	bm25prf+bm25	Ν	Ν	Ν	Ν
ORGJ-J-8	rm3+qld	Ν	Ν	Ν	Ν
ORGJ-J-7	sdm+bm25	Ν	Ν	Ν	Ν
ORGJ-J-2	bm25	Ν	Ν	Ν	Ν
ORGJ-J-5	rm3+bm25	Ν	Ν	Ν	N
ORGJ-J-4	sdm+qld	Ν	Ν	Ν	N
ORGJ-J-3	bm25.accurate	Ν	Ν	Ν	N
UHGSIS-J-9	BM25, BERT, query modification, target 1000	Ν	Y	N	N
UHGSIS-J-7	BM25, BERT, query modification, target 2000	Ν	Y	N	Ν
UHGSIS-J-6	BM25, BERT, query original, target 3000	Ν	Y	Ν	Ν
UHGSIS-J-1	BM25, BERT, query modification, target all	Ν	Y	N	Ν
UHGSIS-J-8	BM25, BERT, query original, target 2000	Ν	Y	Ν	Ν
UHGSIS-J-4	BM25, query original, target all	Ν	Ν	Ν	Ν
UHGSIS-J-3	BM25, query modification, target all	Ν	Y	Ν	Ν
UHGSIS-J-2	BM25, BERT, query original, target all	Ν	Y	Ν	Ν
UHGSIS-J-5	BM25, BERT, query modification, target 3000	Ν	Y	Ν	Ν
UHGSIS-J-10	BM25, BERT, query original, target 1000	Ν	Y	Ν	Ν

- Neural : BERT-based relevance estimation
  - Input a query and a description of a dataset into BERT for estimating the query-dataset relevance

- Data: Table header extraction
  - Index terms in the table header together with the description of a dataset

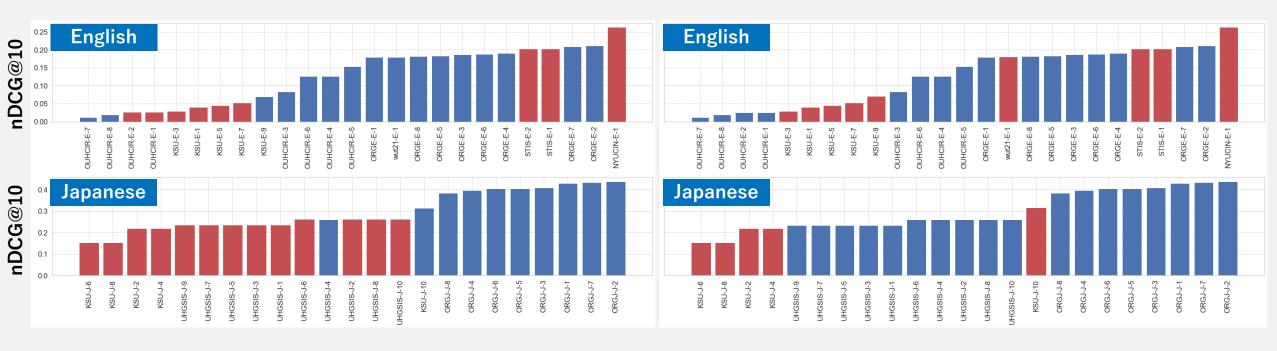


C'1

In

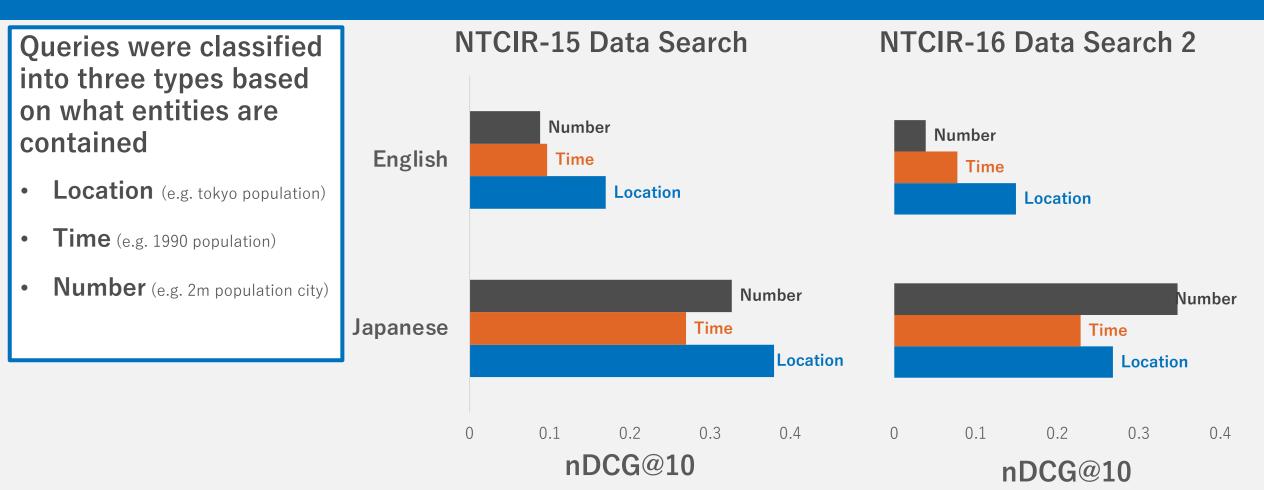
	<ul> <li>(1) 自給率の推移</li> <li>① 品目別自給率の推移</li> </ul>																		
	品	日	昭 和 35年度	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51
	*		102	95	98	95	94	95	101	116	118	117	106	100	100	101	102	110	100
	うち主食用																		
_	小麦		39	43	38	17	28	28	21	20	20	14	9	8	5	4	4	4	-
lex -	大麦		104	89	85	60	58	57	56	50	46	38	28	23	14	8	9	8	
іех <			112	89	90	28	119	123	90	92	115	98	73	73	64	87	111	98	8
	大・裸麦計		107	89	87	51	70	73	65	59	60	48	34	29	18	10	11	10	
	雑穀		21	15	11	9	6	5	3	3	2	2	1	1	1	1	1	1	
	いも類		100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	99	9
	かんしょ		100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	10
	ばれいしょ		101	101	101	100	100	100	100	100	100	100	100	100	100	100	100	99	9
	でんぷん		76	76	71	85	72	67	56	55	56	44	41	36	36	30	23	24	2
	豆類		44	42	35	31	23	25	19	20	17	14	13	11	13	11	11	9	
	大豆その他の豆	402	28	25 90	21 76	17 74	13	11 70	9 57	8 72	(	5 56	4 65	4	4 67	3 60	4 59	4	4
	野菜	3規					58				61		65 99	49 99				45 99	4 9
	野米 果実		100	100 98	100 97	100 92	100 90	100 90	100 89	100 89	100 88	100 85	99 84	99 81	99 81	98 83	98 83	99 84	9
	本夫みかん		100	113	111	92 109	109	109	107	109	105	106	105	106	103	104	104	102	10
	りんご		102	102	102	105	109	109	107	109	103	100	103	100	103	104	104	102	10
				95	95	90	92	93	91	86	85	85	89	84	82	80	84	76	7

**Overall Results** 




NYUCIN-E-1 is the top English run,

though it is not significantly different from the other top runs including baselines


### "Neural" runs

### "Data" runs



Again, not conclusive, but the top English runs incorporated "Neural" and "Data"

### Q2. What queries were difficult in dataset retrieval?



### Processing "Time" in queries seems the most difficult (Fairly consistent with the finding in the previous round)

- Data Search 2 addressed an ad-hoc retrieval task for datasets
- Details of the runs will be discussed at Task Session [JST] 10:30 ~ 11:30 on July 17; [UTC] 01:30 ~ 02:30 on July 17; [EDT] 21:30 ~ 22:30 on July 16
  - -1. NYUCIN at the NTCIR-16 Dataset Search 2 Task
  - -2. KSU Systems at the NTCIR-16 Data Search2 IR Subtask
  - -3. STIS at the NTCIR-16 Data Search Task: Ad-hoc Data Retrieval Ranking with Pretrained Representative Words Prediction
- Additionally, an invited talk will be given by Prof. Gong Cheng (Nanjing University):

Towards Content-Based Dataset Search: Test Collections and Beyond