Overview of the NTCIR-16 Dialogue Evaluation (DialEval-2) Task

> Sijie Tao and Tetsuya Sakai Waseda University

- 1. History, definition, and motivation of DialEval
- 2. The new data collection for DialEval-2
- 3. Participants
- 4. Results
- 5. Conclusions

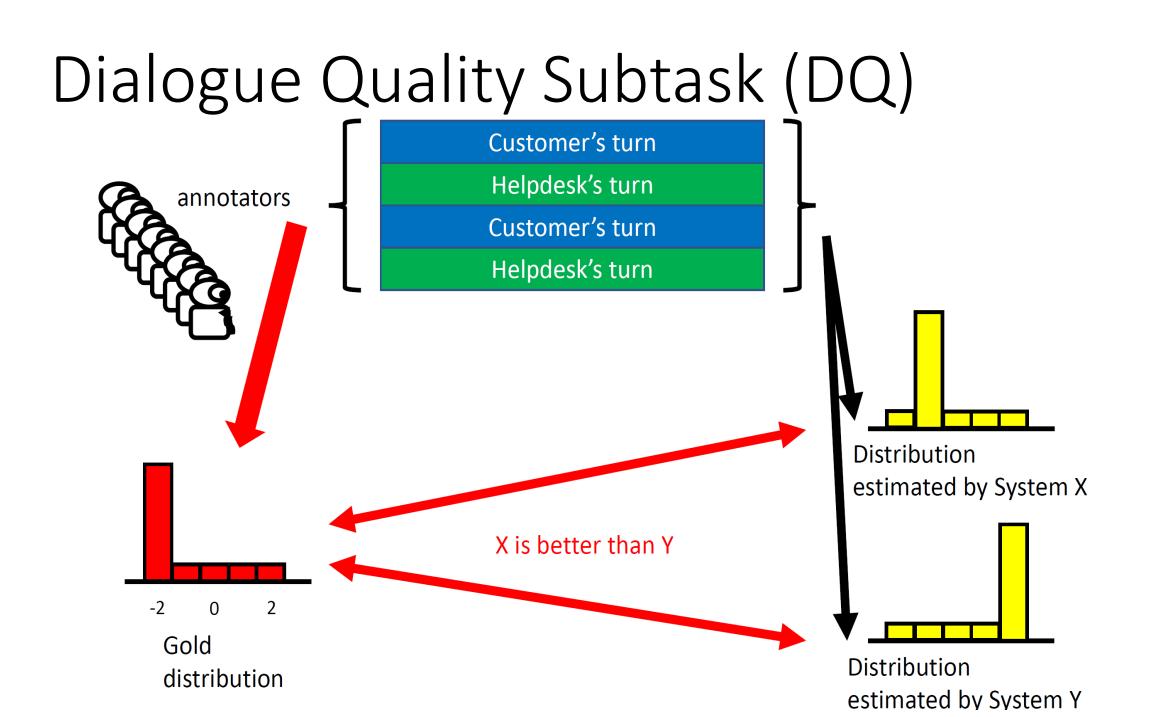
1. History, definition, and motivation of DialEval

- 2. The new data collection for DialEval-2
- 3. Participants
- 4. Results
- 5. Conclusions

History of the task

- NTCIR-14, Jun 2019, Short Text Conversation Task (STC-3) [Zeng+19]
 - DCH-1 Dataset used as training and test sets
 - 3,700 + 390 for Chinese, 1,672 + 390 for English
- NTCIR-15, Dec 2020, Dialogue Evaluation Task (DialEval-1) [Zeng+20]
 - DCH-1 used as training and development sets, new test set built
 - 3,700 + 390 + 300 for Chinese, 2,251 + 390 + 300 for English
- NTCIR-16, Jun 2022, Dialogue Evaluation Task (DialEval-2)
 - DCH-2 [Zeng+21] as training and development sets, new test set built
 - 4,090 + 300 + 65 for both Chinese and English

Task Definition

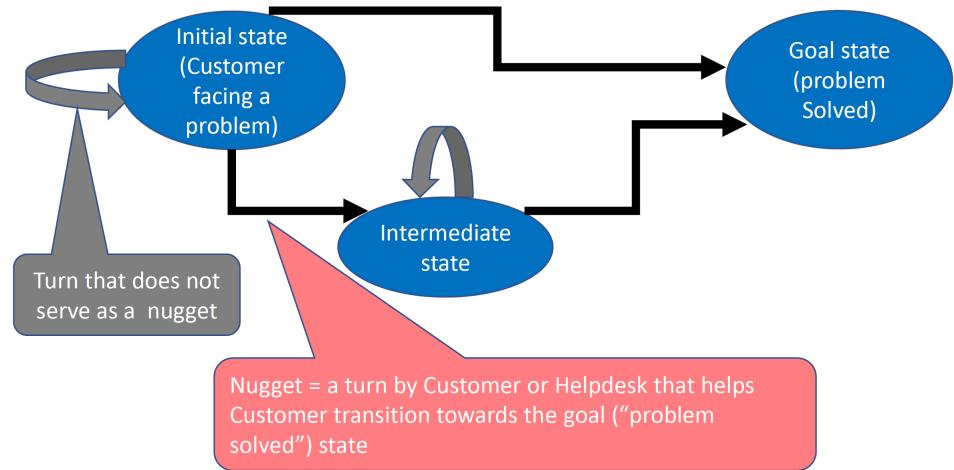

- DialEval-2 hosts two subtasks:
 - Dialogue Quality (DQ)
 - Nugget Detection (ND)
- **DQ**: Given a customer-helpdesk dialogue, return an estimated distribution of dialogue quality ratings for the entire dialogue
- ND: Given a customer-helpdesk dialogue, return an estimated distribution of labels over nugget types for each turn

An Example of a customer-helpdesk dialogue [Zeng+20]

Dialogue Quality Subtask (DQ)

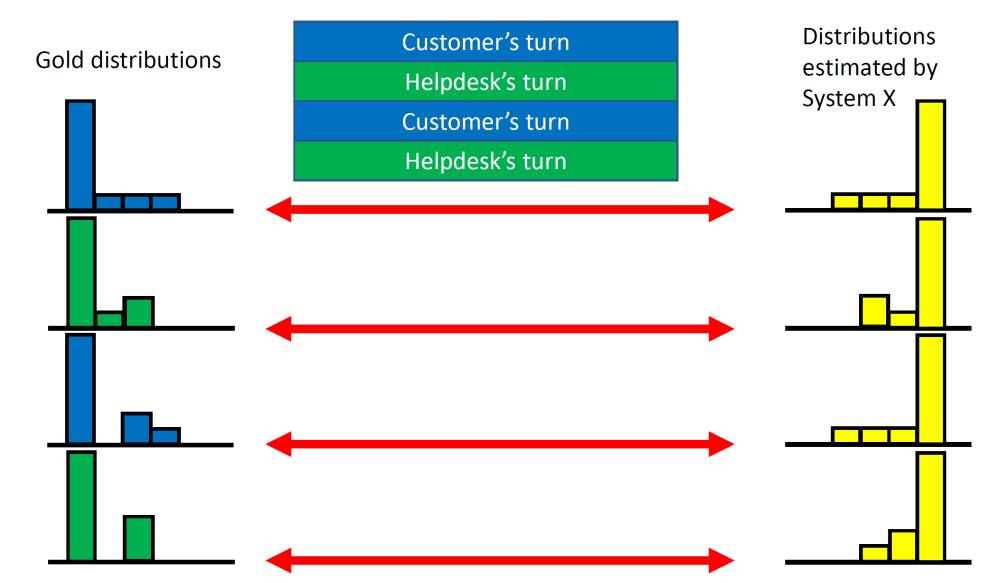
- Given a customer-helpdesk dialogue, return an estimated distribution of dialogue quality ratings for the entire dialogue.
- Three types of dialogue quality ratings (Likert scale -2 to 2):
 - A-score: Task Accomplishment
 - S-score: Customer Satisfaction (about the dialogue itself, not about the product/service)
 - E-score: Dialogue Effectiveness

Dialogue Quality Subtask (DQ)


- Evaluation metrics
 - NMD (Normalised Match Distance)
 - RSNOD (Root Symmetric Normalised Order-aware Divergence) [Sakai18]
- Both measures take into account the distance between two bins, to make sure X is rated higher than Y in the previous slide.

• What is a nugget?

An Example of a customer-helpdesk dialogue [Zeng+20]



• What is a nugget?

• Given a customer-helpdesk dialogue, return an estimated distribution of labels over nugget types for each turn

Nugget type	Customer	Helpdesk
Trigger	CNUG0: tell the problem to Helpdesk	
Regular	CNUG	HNUG
Goal	CNUG*: tell Helpdesk that the problem has been solved	HNUG*: tell Customer the solution to the problem
Not-a-nugget	CNaN	HNaN

- Evaluation metrics
 - RNSS (Root Normalised Sum of Squares)
 - JSD (Jensen-Shannon Divergence) [Sakai18]
- No need to use NMD or RSNOD, as the bins in the ND subtask are nominal (e.g. HNUG, HNUG*, HNaN), not ordinal

Motivation of the task

- Evaluate customer-helpdesk dialogues automatically
- DQ: An effective DQ system is useful for building helpdesk systems that can generate effective utterances for diverse users.
- ND: An effective ND system is useful for building effective helpdesk systems that can self diagnose at the dialogue turn level to improve themselves.

1. History, definition, and motivation of DialEval

2. The new data collection for DialEval-2

- 3. Participants
- 4. Results
- 5. Conclusions

The new data collection for DialEval-2

- For DialEval-2, we use DCH-2 dataset [Zeng+21] as training and development sets
- A new test set which contains 65 dialogues is additionally built

	Training	Chinese Dev	Test	Training	English Dev	Test
Source	DCH-2	DCH-2	Weibo	· 	Translation	
Data timestamps	Jan. 2013 ~ Apr. 2018	Apr. 2018 ~ Jul. 2019	Apr. 2018 ~ Jul. 2019	Jan. 2013 ~ Apr. 2018	Apr. 2018 ~ Jul. 2019	Apr. 2018 ~ Jul. 2019
#dialogues	4,090	300	65	4,090	300	65
#annotators/dialogue	19	20	20	19	20	20
Quality annotation criteria	A-score, E-score, S-score (See Section 2.2)					
Nugget types	CNUG0, CNUG, HNUG, CNUG*, HNUG* (See Section 2.3)					

1. History, definition, and motivation of DialEval

2. The new data collection for DialEval-2

3. Participants

- 4. Results
- 5. Conclusions

Participant teams (only four, last time we had seven)

- IMNTPU (National Taipei University) [Hsiao+22]
- NKUST (National Kaohsiung University of Science and Technology) [Chang+22]
- RSLDE (Waseda University) [Li+22]
- TUA1 (Tokushima University) [Ding+22]

Teams	Runs	Chi	nese	English		
louins		DQ	ND	DQ	ND	
IMNTPU	1	1	0	1	1	
NKUST	2	1	2	0	1	
RSLDE	3	2	3	2	3	
TUA1	3	3	2	1	1	
Total	9	7	7	4	6	

- 1. History, definition, and motivation of DialEval
- 2. The new data collection for DialEval-2
- 3. Participants

4. Results

5. Conclusions

Results

- Baselines (exactly the same as the baselines in DialEval-1) [Zeng+20]
 - BL-Istm (Baseline-run0): A baseline model which leverages Bidirectional Long Short-term Memory;
 - BL-uniform (Baseline-run1): A baseline model which always predict the uniform distribution;
 - BL-popularity (Baseline-run2): A baseline model which predicts the probability of the most popular label as one, and predicts other labels as 0.

Results (DQ, Chinese)

- TUA1-run1, 2 are the top runs in terms of RSNOD and NMD for A and S-score
- Only TUA-run0 outperforms Baseline-run0 statistically significantly in terms of NMD for E-score

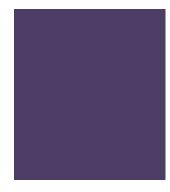


Table 4: Chinese Dialogue Quality (A-score) Results

Table 5: Chinese Dialogue Quality (S-score) Results

Table 6: Chinese Dialogue Quality (E-score) Results

Run	Mean RSNOD	Run	Mean NMD	Run	Mean RSNOD	Run	Mean NMD	Run	Mean RSNOD	Run	Mean NMD
TUA1-run2	0.1992	TUA1-run2	0.1325	TUA1-run2	0.1758	TUA1-run1	0.1159	TUA1-run0	0.1545	TUA1-run0	0.1136
TUA1-run1	0.2092	TUA1-run1	0.1369	TUA1-run1	0.1840	TUA1-run2	0.1166	TUA1-run1	0.1647	RSLDE-run0	0.1222
TUA1-run0	0.2154	TUA1-run0	0.1474	TUA1-run0	0.1884	RSLDE-run1	0.1229	RSLDE-run0	0.1660	TUA1-run1	0.1262
Baseline-run0	0.2301	RSLDE-run0	0.1537	RSLDE-run0	0.1938	RSLDE-run0	0.1243	TUA1-run2	0.1671	RSLDE-run1	0.1286
Baseline-run2	0.2320	RSLDE-run1	0.1551	RSLDE-run1	0.1964	Baseline-run2	0.1288	RSLDE-run1	0.1725	TUA1-run2	0.1310
RSLDE-run0	0.2438	Baseline-run2	0.1577	Baseline-run0	0.1998	TUA1-run0	0.1305	Baseline-run0	0.1854	IMNTPU-run0	0.1427
RSLDE-run1	0.2446	IMNTPU-run0	0.1618	IMNTPU-run0	0.2032	IMNTPU-run0	0.1315	IMNTPU-run0	0.1860	Baseline-run0	0.1579
IMNTPU-run0	0.2479	Baseline-run0	0.1772	Baseline-run2	0.2062	Baseline-run0	0.1523	NKUST-run0	0.2253	Baseline-run2	0.1710
Baseline-run1	0.2767	NKUST-run0	0.2453	NKUST-run0	0.2732	NKUST-run0	0.2293	Baseline-run1	0.2496	NKUST-run0	0.1897
NKUST-run0	0.2774	Baseline-run1	0.2500	Baseline-run1	0.2959	Baseline-run1	0.2565	Baseline-run2	0.2569	Baseline-run1	0.2106

Results (DQ, English)

- TUA1-run0 is the top run and the only run that outperforms the baseline systems
- But the differences between TUA1-run0 and the top baselines are not statistically significant

Table 9: English Dialogue Quality (A-score) Results

Table 10: English Dialogue Quality (S-score) Results

Table 11: English Dialogue Quality (E-score) Results

Run	Mean RSNOD	Run	Mean NMD	Run	Mean RSNOD	Run	Mean NMD	Run	Mean RSNOD	Run	Mean NMD
TUA1-run0	0.1967	TUA1-run0	0.1327	TUA1-run0	0.1855	TUA1-run0	0.1214	TUA1-run0	0.1742	TUA1-run0	0.1360
Baseline-run2	0.2320	Baseline-run2	0.1577	Baseline-run0	0.1986	Baseline-run2	0.1288	Baseline-run0	0.1745	IMNTPU-run0	0.1400
Baseline-run0	0.2321	IMNTPU-run0	0.1654	IMNTPU-run0	0.2020	IMNTPU-run0	0.1312	IMNTPU-run0	0.1826	RSLDE-run0	0.1429
IMNTPU-run0	0.2535	Baseline-run0	0.1780	Baseline-run2	0.2062	RSLDE-run0	0.1381	RSLDE-run0	0.1832	Baseline-run0	0.1431
RSLDE-run0	0.2615	RSLDE-run1	0.1896	RSLDE-run0	0.2078	RSLDE-run1	0.1438	RSLDE-run1	0.1889	RSLDE-run1	0.1444
RSLDE-run1	0.2725	RSLDE-run0	0.1957	RSLDE-run1	0.2154	Baseline-run0	0.1467	Baseline-run1	0.2496	Baseline-run2	0.1710
Baseline-run1	0.2767	Baseline-run1	0.2500	Baseline-run1	0.2959	Baseline-run1	0.2565	Baseline-run2	0.2569	Baseline-run1	0.2106

Results (ND, Chinese)

- RSLDE-run0 is the top run and the only run that can outperform Baseline-run0 in terms of both JSD and RNSS
- But the difference between them is not statistically significant

Table 7: Chinese Nugget Detection Results

Run	Mean JSD	Run	Mean RNSS
RSLDE-run0	0.0560	RSLDE-run0	0.1604
Baseline-run0	0.0585	Baseline-run0	0.1651
RSLDE-run2	0.0607	RSLDE-run1	0.1712
RSLDE-run1	0.0634	RSLDE-run2	0.1720
NKUST-run0	0.0670	NKUST-run0	0.1761
TUA1-run0	0.0700	TUA1-run0	0.1780
Baseline-run2	0.1864	Baseline-run2	0.2901
Baseline-run1	0.2042	Baseline-run1	0.3371
NKUST-run1	0.2432	NKUST-run1	0.3774
TUA1-run1	0.2909	TUA1-run1	0.3939

Results (ND, English)

- RSLDE-run0 and IMNTPU-run0 are the runs can outperform Baselinerun0
- But their differences between the baseline are not statistically significant

Table 12: English Nugget Detection Results

Run	Mean JSD	Run	Mean RNSS
RSLDE-run0	0.0557	IMNTPU-run0	0.1574
IMNTPU-run0	0.0601	RSLDE-run0	0.1615
Baseline-run0	0.0625	Baseline-run0	0.1722
NKUST-run0	0.0641	NKUST-run0	0.1744
RSLDE-run2	0.0676	RSLDE-run2	0.1778
RSLDE-run1	0.0691	TUA1-run0	0.1830
TUA1-run0	0.0728	RSLDE-run1	0.1853
Baseline-run2	0.1864	Baseline-run2	0.2901
Baseline-run1	0.2042	Baseline-run1	0.3371

Results (Differences between metrics)

- The difference between different metrics are not statistically significant for both ND and DQ subtasks
- Consistent with what we observed at DialEval-1 and STC-3. [Zeng+19][Zeng+20]

Table 8: Ranking Correlation between of Chinese runsranked by two different metrics (Kendall's tau with 95% CIs)

Dialogue Quality (A-score)						
NMD vs RSNOD	0.689	[-0.189, 1.000]				
Dialogue Quality (S-score)						
NMD vs RSNOD	0.644	[0.300, 1.000]				
Dialogue Quality ((E-score)					
NMD vs RSNOD	0.778	[0.538, 1.000]				
Nugget Detection						
JSD vs RNSS	0.956	[0.706, 1.000]				

Table 13: Ranking Correlation between of English runs ranked by two different metrics (Kendall's *tau* with 95% CIs)

Dialogue Quality (A-score)						
NMD vs RSNOD 0.810	[0.091, 1.000]					
Dialogue Quality (S-score)						
NMD vs RSNOD 0.524	[-0.059, 1.000]					
Dialogue Quality (E-score)						
NMD vs RSNOD 0.714	[-0.059, 1.000]					
Nugget Detection						
JSD vs RNSS 0.889	[0.613, 1.000]					

- 1. History, definition, and motivation of DialEval
- 2. The new data collection for DialEval-2
- 3. Participants
- 4. Results
- 5. Conclusions

Conclusions

- Overview of DialEval-2:
 - Task definition
 - Data collection
 - Evaluation results
- From the evaluation results, we observe that
 - Only one run from TUA1 outperform the LSTM baseline significantly in Chinese DQ task in terms of NMD for E-score.
 - In other subtasks, none of the runs can outperform the LSTM baseline significantly.
 - No substantial difference is observed between the evaluation metrics for each subtasks.

References

[Zeng+19] Zhaohao Zeng, Sosuke Kato, and Tetsuya Sakai. 2019. Overview of the NTCIR-14 Short Text Conversation Task: Dialogue Quality and Nugget Detection Subtasks. In *Proceedings of NTCIR-14*. 290–315.

[Zeng+20] Zhaohao Zeng, Sosuke Kato, Tetsuya Sakai, and Inho Kang. 2020. Overview of the NTCIR-15 Dialogue Evaluation (DialEval-1) Task. In *Proceedings of NTCIR-15*. 13–34.

[Zeng+21] Zhaohao Zeng and Tetsuya Sakai. 2021. DCH-2: A Parallel Customer-Helpdesk Dialogue Corpus with Distributions of Annotators' Labels. *CoRR* abs/2104.08755 (2021). arXiv:2104.08755 <u>https://arxiv.org/abs/2104.08755</u>

[Sakai18] Tetsuya Sakai. 2018. Comparing Two Binned Probability Distributions for Information Access Evaluation. In *The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval* (Ann Arbor, MI, USA) (*SIGIR'18*). ACM, New York, NY, USA, 1073–1076.

References

[Chang+22] Tao-Hsing Chang and Jian-He Chen. 2022. NKUST at the NTCIR-16 DialEval-2 Task. In *Proceedings of NTCIR-16*. to appear.

[Ding+22] Fei Ding, Kang Xin, Yunong Wu, and Fuji Ren. 2022. TUA1 at the NTCIR-16 DialEval-2 Task. In *Proceedings of NTCIR-16*. to appear.

[Hsiao+22] Ting-Yun Hsiao, Yung-Wei Teng, Pei-Tz Chiu, Mike Tian-Jian Jiang, and Min-Yuh Day. 2022. IMNTPU Dialogue System Evaluation at the NTCIR-16 DialEval-2 Dialogue Quality and Nugget Detection. In *Proceedings* of NTCIR-16. to appear.

[Li+22] Fan Li and Tetsuya Sakai. 2022. RSLDE at the NTCIR-16 DialEval-2 Task. In *Proceedings of NTCIR-16*. to appear.