CYUT at the NTCIR-16 FinNum-3 Task: Data Resampling and Data Augmentation by Generation

Xie-Sheng Hong, Jia-Jun Lee, Shih-Hung Wu Chaoyang University of Technology Taichung, Taiwan Mike Tian-Jian Jiang Zeals Co, Ltd Tokyo, Japan

ABSTRACT

We submitted 3 runs in both two subtask in shared task.

Attempting to solve the problem through data augmentation by *data resampling and data generation*. Also, we did additional runs to test the validity of our original proposed methods by conducting more oriented attempts.

Official Runs and Additional Runs

CYUT-1: MacBERT / RoBERTa with BiLSTM ⇒ Baseline for our all systems ⇒ Data resampling CYUT-2: MacBERT / RoBERTa with AWD-LSTM ⇒ Replace BiLSTM with AWD-LSTM ⇒ Data resampling

 \Rightarrow Data resampling

CYUT-3: MacBERT / RoBERTa with Additional data \Rightarrow GPT-2 generates additional data

- Morel Data: To generate more additional data
- More Seeds: Using more text types to generate
- 1000 Data: Using only the first 1000 additional data
- ➢ No Change: Only use MacBERT / RoBERTa with BiLSTM

GPT-2 Data Generation

Result Analyst's Repor Micro-F1 Run Macro-F1 Recall CYUT-2 86.76% 91.73% 90.32% 88.76% CYUT-3 88.20% 92.16% CYUT-1 88.80% 92.11% 87.34% No Change 88.75% 92.52% 89.30% 89.23% 92.86% 89.92% More Data and Seed 91.66% More Seed 89.30% 93.14% 93.16% 89.52% 1000 Data 89.97% More Data 90.24% 93.43% 90.31%

Earnings Conference Call			
Run	Macro-F1	Micro-F1	Recall
CYUT-1	85.53%	94.67%	79.82%
More Seeds	85.93%	95.00%	80.74%
More Data	86.73%	95.93%	84.78%
More Data and Seeds	87.17%	95.76%	83.25%
1000 Data	87.28%	95.73%	83.15%
CYUT-2	87.49%	95.64%	82.39%
CYUT-3	87.88%	96.43%	87.25%
No Change	88.15%	96.22%	85.03%

Discussion and Conclusions

Earnings Conference call (English data):

Input: We anticipate a X increase

- 1. The quality of additional texts may be more important than the amount
- 2. Pay attention to possible overfitting
- 3. There are advantages and disadvantages among systems in each category \Rightarrow Build a large multi-model system that leverages the strengths of each system \Rightarrow A system with a low theoretical error rate

Output(Max length: 50): We anticipate a X increase in the number of cases with...

A fixed text + A random number input GPT-2 => Generate subsequent text

Analyst's Report (Chinese data):

Input: 我們推測會上升(We predict an increase of X)

Output(Max length: 100): *我們推測會上升X*%,明天早晨大跌...

(We predict an increase of X% and a big fall tomorrow morning...)

X: meaning a random number (range: 0 - 1000)

NULERSITY OF THE NOLOGY