FUJITSU

FRDC at NTCIR-16 Real-MedNLP Task

FRDC
Zhnogguang Zhong
Lu Fang
Yiling Cao
2022/6/17

© 2021 Fujitsu Limited

Tasks Participated

- OSubtask1-CR-EN (NER)
- Subtask3-CR-EN (ADE)
- OSubtask3-RR-EN (CI)

Data augmentation

- From: An Analysis of Simple Data Augmentation for Named Entity Recognition
 - Label-wise token replacement (LwTR): we use a binomial distribution to randomly decide whether
 the token should be replaced. If yes, then randomly select another token with the same label
 - Synonym replacement (SR): replace the token with one of its synonyms retrieved from WordNet
 - Mention replacement (MR): randomly select another mention from the original training set which has the same entity type as the replacement
 - Shuffle within segments (SiS): first split the token sequence into segments of the same label. Thus, each segment corresponds to either a mention or a sequence of out-of-mention tokens. Then for each segment, we use a binomial distribution to randomly decide whether it should be shuffled.

	Instance											
	She	did	not	complain	of	headache	or	any	other	neurological	symptoms	1547
None	O	O	O	Ô	O	B-problem	O	B-problem	I-problem	I-problem	I-problem	O
LwTR	L.	One	not	complain	of	headache	he	any	interatrial	neurological	current	6.0
LWIK	O	O	O	Ó		B-problem	O	B-problem	I-problem	I-problem	I-problem	O
CD	She	did	non	complain	of	headache	or	whatsoever	former	neurologic	symptom	0.00
SR	O	O	O	Ô	O	B-problem	O	B-problem	I-problem	I-problem	I-problem	ò
MD	She	did	not	complain	of	neuropathic	pain	syndrome	or	acute	pulmonary	disease .
MR	O	O	O	Ô		B-problem		I-problem	O	B-problem	I-problem	I-problem O
G:G	not	complain	She	did	of	headache	or	neurological	any	symptoms	other	190
SiS	O	Ó	O	O	0	B-problem	O	B-problem	I-problem	I-problem	I-problem	O

Result of data augmentation (SR, MR, LwTR, SiS)

model	Augmentation strategy	epoch	Dev set F1	Test set F1
BioBERT + CRF	None (baseline)	40	0.626	0.573
BioBERT + CRF	LwTR	40	0.633	0.565
BioBERT + CRF	SR	40	0.635	0.591
BioBERT + CRF	MR	40	0.625	0.573
BioBERT + CRF	SiS	40	0.631	0.559
BioBERT + CRF	SR+MR	40	0.643	0.577
BioBERT + CRF	LwTR+SR+SiS	40	0.612	0.5
BioBERT + CRF	All	40	0.637	0.578

Result of data augmentation (SR, MR, LwTR, SiS)

model	Augmentation	epoch	Test set F1
BioBERT + CRF	none	40	0.573
BioBERT + CRF	SR	40	0.591
BioBERT + CRF	all	40	0.578

BioBERT model is better

model	Augmentation	Р	R	F1
BioBERT	no	0.6028	0.5974	0.6001
BioBERT	SR	0.596	0.6015	0.5988
BioBERT	all	0.5985	0.6072	0.6029

The 2 models submitted

model	Training set size	Р	R	F1
BioBERT	2/3 data of all the dataset	0.6419	0.6539	0.6478
BioBERT	2/3 data of all the dataset + sr+mr+lwtr+sis	0.6463	0.6445	0.6454

The result

	num of each tag	propotion	Entity	y-F1	rank
а	819	16.67%	51.56	49.72	3
d	2346	47.76%	55.28	58.74	3
m-key	344	7.00%	64.90	65.33	3
m-val	64	1.30%	66.67	71.19	1
t-key	524	10.67%	37.12	38.58	2
t-test	388	7.90%	48.26	47.06	2
t-val	427	8.69%	45.37	45.10	3
num of all tags	4912				
(All target entities)			38.55	40.58	4

Adverse Drug Event detection (ADE)

- Extract adverse drug event (ADE) information from case reports and fill out a table
 - This subtask is especially designed for MedTxt-CR
 - Given an input report, the system extracts the ADE information from the report.
 - Four levels of ADE certainty (ADEval) are to be given:
 - O 3 Definitely
 - 2 Probably
 - O1 Unlikely
 - 0 Unrelated
 - Two types of entities:
 - Disease and symptom names
 - OMedication(drug) names

Adverse Drug Event detection (ADE)

OMethod

- Our method is based on fine-tuning the vocabulary adapted BERT model (VART) with multi-learning mechanism, where we transform the ADE task as a classification task
 - Input Sequence: [CLS] context [SEP] entity_name
 - OMain task: Classification of four levels (ADEval = 0, 1, 2, 3)
 - Auxiliary task: Learning to classify the type of an entity (two types)

Dataset

Training data (small and imbalance)

○148 reports	ADEval	0	1	2	3
	Number of entities	1376	63	85	174

- Test data:75 reports, 671 entities
- Data Augmentation for training data
 - Punctuation insertion and synonym replacement methods

Adverse Drug Event detection (ADE)

Results of official run on test data

• We achieved the second best F1-score on entity level evaluation of

ADEval=1,3

Also, the secondbest F1-score onreport level evaluation

MaskedGroupID		C8	I1	F2	H1
	Р	96.42	97.02	95.39	96.57
ADEval=0	R	97.79	97.63	98.10	97.95
	F	97.10	97.32	96.73	97.25
	Р	20.00	30.00	0.00	14.29
ADEval=1	R	5.26	31.58	0.00	5.26
	F	8.33	30.77	0.00	7.69
	Р	47.62	100.00	40.00	60.00
ADEval=3	R	52.63	26.32	42.11	63.16
	F	50.00	41.67	41.03	61.54
	Р	50.00	50.00	40.00	50.00
Report-level	R	77.78	88.89	44.44	66.67
	F	60.87	64.00	42.11	57.14

Case Identification (CI)

- Two-step Document Clustering Method
 - Key Feature based clustering
 - Cluster document based on trusted features
 - K-means clustering
 - Document embedding
 - Data Augmentation
 - Opata De-nosing

Key Feature Based Clustering

Key Feature Extraction

• Information: 9 documents in each cluster

Words	DF	TF	CF			
in	71	273	8			
the	70	627	8			
lung	63	152	8			
12	9	10	1			
atelectasis	8	11	1			

Words	7<=DF<=9	TF	CF
image	9	9	5
impression	9	9	8
12	9	10	1

Words= Number	7<=DF<=9	TF	CF
12	9	10	1
28	8	8	1
43	8	8	1
78	8	8	1
18	8	8	1

<article id="0" title="03">
There is <d certainty="positive">consolidation</d> <a>along the brown title="positive">bronchiectasis</d> and <d certainty="positive">pleural contradiction with the <d certainty="positive">lung cancer</d> you
The size of the <d certainty="positive">lesion</d> is <f>28 mm</f>

```
<article id="3" title="03">
An <d certainty="positive">irregular mass lesion</d> of <f>approximately 28 mm</f>
lingular segment S4</a>. The <a>interior</a> is <f>occupied</f> by <d certainty="positive">expanded image</d> <f>partly</f> remains in the <a>bronchioles</a>. Suspredominant lepidic growth pattern</f>. There is also a <d certainty="positive">lingular segment S4</a>. Suspredominant lepidic growth pattern</f>. There is also a <d certainty="positive">lingular segment S4</a>. Suspredominant lepidic growth pattern</f>. There is also a <d certainty="positive">lingular segment S4</a>. Suspredominant lepidic growth pattern/f>. There is also a <d certainty="positive">lingular segment S4</a>. Suspredominant lepidic growth pattern/f>. There is also a <d certainty="positive">lingular segment S4</a>. Suspredominant lepidic growth pattern/f>. There is also a <d certainty="positive">lingular segment S4</a>. Suspredominant lepidic growth pattern/f>. There is also a <d certainty="positive">lingular segment S4</a>. Suspredominant lepidic growth pattern/f>. There is also a <d certainty="positive">lingular segment S4</a>. Suspredominant lepidic growth pattern/f>. There is also a <d certainty="positive">lingular segment S4</a>. Suspredominant lepidic growth pattern/f>. There is also a <d certainty="positive">lingular segment S4</a>. Suspredominant lepidic growth pattern/f>. There is also a <d certainty="positive">lingular segment S4</a>. Suspredominant lepidic growth pattern
```

K-means Document Clustering

- Document embedding
 - Vocabulary Adapted BERT Model
 - Adapt BERT model on the target training set by extending the BERT vocabulary
 - Use sentence-transformer to encode the document
- Data Augmentation for Pre-training BERT
 - Original documents + documents with stopwords removal
- Document De-noising
 - Input: original documents + de-noised document
 - Remove the subjective contents

Results on Training Set

Experiment results

Each number is the average normalized mutual info score (NMI) of 50

runs.

Pre-trained models **TAPT**: pre-train
BERT/BioBERT on the
training set at first.

VART: vocabulary adapted BERT model

Dataset format txt: original document rm_stop: remove the stop words de-noise: remove the subjective contents (denoise)

Thank you

© 2021 Fujitsu Limited