JRIRD at the NTCIR-16 FinNum-3 Task: Investigating the Effect of Numerical Representations in Manager's Claim Detection Shunsuke Onuma and Kazuma Kadowaki, The Japan Research Institute, Limited

Abstract

- Investigated the performance of claim detection task with various numerical formats
- Two settings for each formats : claim detection only, joint learning (claim detection & category classification)
- Results
 - Best numerical format depended on models and settings
 - Joint learning was effective in some cases

Numerical Formats

Formats	Example : Year 2018 Fourth Quarte
Mask	Year [MASK] Fourth Quarter : ignores numeral (for comparis
Marker	Year [NUM] 2018 [NUM] Fourth : distinguishes target numeral b
Digit	Year [NUM] 2 0 1 8 [NUM] Four : avoids subwording numerals
Scientific (sig1)	Year [NUM] 2 [EXP] 3 [NUM] For : focuses on significant digit & r numeral
Scientific (sig4)	Year [NUM] 2 . 0 1 8 [EXP] 3 [N Quarter : more significant digits

Copyright © 2022 The Japan Research Institute, Limited

Training Method

- son)
- Quarter oy [NUM]
- th Quarter
- ourth Quarter magnitude of
- **UM**] Fourth

- datasets
- prediction

Submit Models

- Select submit models in Joint Learning setting
- Best score in each model of BERT (large), RoBERTa and FinBERT

JRIRD1: BERT (large) with Marker JRIRD2: RoBERTa with *Scientific (sig4)* **JRIRD3: FinBERT with** *Marker*

Result : Effects of Numerical Formats

Macro-F1 in claim detection task on joint learning setting:

Formats other than Mask were best for each models \Rightarrow Numerals are informative (except RoBERTa in joint learning) (2) Best formats depend on models

Result : Effects of Joint Learning

Improvement of macro-F1 in joint learning setting (claim detection):

	BERT (base)	BERT (large)	FinBERT	RoBERTa	T5
Max	0.014	0.014	0.017	0.003	0.005
Min	0.009	-0.004	0.006	-0.013	-0.005

RoBERTa, T5

Future Works

Japan Research Institute

BERT (base)	BERT (large)	FinBERT	RoBERT a	T5
0.895	0.899	0.893	0.904	0.896
0.903	0.908 *1	0.910*3	0.904	0.893
0.911	0.902	0.901	0.897	0.900
0.900	0.897	0.899	0.901	0.903
0.904	0.903	0.911	0.895*2	0.901

* submitted models

Not consistent in large models: BERT (large),

Statistical analysis for the effect of formats Investigating optimal setting for joint learning

The 16th NTCIR Conference. Jun 14–17, 2022, Tokyo, Japan