

# JRIRD at the NTCIR-16 FinNum-3 Task: Investigating the Effect of Numerical Representations in Manager's Claim Detection

# Shunsuke Onuma and Kazuma Kadowaki The Japan Research Institute, Limited

The 16th NTCIR Conference. Jun 14–17, 2022, Tokyo, Japan

FinNum-3 (Manager's Claim Detection)



#### Abstract

- Participate in Manager's Claim Detection (English subtask) of FinNum-3
  - Claim detection: judges whether a target numeral is in a manager's claim or not
  - Numerical category classification: classifies a target numeral into one of 12 categories
- Investigate the performance of the claim detection task with various numerical representations
- Experiment on two task settings
  - Claim detection only
  - Joint learning
    - claim detection & numerical category classification

The 16th NTCIR Conference. Jun 14–17, 2022, Tokyo, Japan



## Our Approach for Manager's Claim Detection

- Use five pre-trained language models and fine-tuned them
  - BERT (base), BERT (large), FinBERT, RoBERTa (large), T5 (large)
- Preprocess the input texts with the following numeral formats:

| Format            | Example: Fiscal Year 2018 Fourth Quarter             |
|-------------------|------------------------------------------------------|
| Mask              | Fiscal Year [MASK] Fourth Quarter                    |
| Marker            | Fiscal Year [NUM] 2018 [NUM] Fourth Quarter          |
| Digit             | Fiscal Year [NUM] 2 0 1 8 [NUM] Fourth Quarter       |
| Scientific (sig1) | Fiscal Year [NUM] 2 [EXP] 3 [NUM] Fourth Quarter     |
| Scientific (sig4) | Fiscal Year [NUM] 2.018 [EXP] 3 [NUM] Fourth Quarter |

- Expect: *Digit* and *Scientific* help language models better recognize numerals
  - *Digit* splits numerals into each digit (avoids subwording numerals)
  - *Scientific* indicate significant digit(s) and magnitude of each numeral

The 16th NTCIR Conference. Jun 14–17, 2022, Tokyo, Japan

FinNum-3 (Manager's Claim Detection)



# Training Method

- Split train dataset into 5 folds
  - train dataset : valid dataset = 4 :  $1 \rightarrow 5$  train/valid datasets
- Fine-tune a language model for each of 5 train/valid datasets
  - Grid search for best hyperparameters
- Average the predictions from 5 models for final prediction
  - Voting for T5 and soft average for other models

| Split Train dataset |       |       | iset  |       | Fine-tuned models               |
|---------------------|-------|-------|-------|-------|---------------------------------|
| Train               | Train | Train | Train | Valid |                                 |
| Train               | Train | Train | Valid | Train | Final prediction mode<br>Model2 |
|                     |       |       |       |       |                                 |
| Valid               | Train | Train | Train | Train |                                 |

The 16th NTCIR Conference. Jun 14-17, 2022, Tokyo, Japan



#### Select Models

- Select models for submission
  - joint learning setting
  - Best score in each model of BERT (large), RoBERTa and FinBERT
    - Macro-F1 score (dev) of the claim detection task
    - Experiment using T5 is not conducted before submitting
- Submit models
  - 1. BERT (large) with *Marker*
  - 2. RoBERTa with *Scientific (sig4)*
  - 3. FinBERT with *Marker*



### Results : Effect of Numerical Formats

Macro-F1 (test) for the claim detection task on joint learning:

|                   | BERT<br>(base) | BERT<br>(large) | FinBERT             | RoBERTa      | <b>T</b> 5   |
|-------------------|----------------|-----------------|---------------------|--------------|--------------|
| Mask              | 0.895          | 0.899           | 0.893               | <u>0.904</u> | 0.896        |
| Marker            | 0.903          | <u>0.908</u> *1 | 0.910 <sup>*3</sup> | 0.904        | 0.893        |
| Digit             | <u>0.911</u>   | 0.902           | 0.901               | 0.897        | 0.900        |
| Scientific (sig1) | 0.900          | 0.897           | 0.899               | 0.901        | <u>0.903</u> |
| Scientific (sig4) | 0.904          | 0.903           | <u>0.911</u>        | 0.895 *2     | 0.901        |

**Results** 

**Score**: best score in each pretrained model \*

\* : submitted models

- Numerals are informative
  - Formats other than *Mask* were best for each models (except RoBERTa)
- Best formats depend on models
  - We need further experiment to investigate the effect of formats

The 16th NTCIR Conference. Jun 14–17, 2022, Tokyo, Japan

FinNum-3 (Manager's Claim Detection)



# **Results : Effect of Joint Learning**

Improvement of macro-F1 for the claim detection task by joint learning:

|                   | BERT<br>(base) | BERT<br>(large) | FinBERT | RoBERTa | Т5     |
|-------------------|----------------|-----------------|---------|---------|--------|
| Mask              | 0.011          | 0.014           | 0.006   | 0.001   | -0.002 |
| Marker            | 0.011          | 0.013           | 0.017   | 0.003   | -0.005 |
| Digit             | 0.009          | 0.003           | 0.008   | -0.005  | -0.002 |
| Scientific (sig1) | 0.014          | -0.004          | 0.008   | -0.008  | 0.005  |
| Scientific (sig4) | 0.009          | 0.002           | 0.017   | -0.013  | 0.004  |

Red: negative effect

#### <u>Results</u>

- Improve constantly in small models: BERT (base) and FinBERT
- Not consistent in large models: BERT (large), RoBERTa and T5
  - Our setting of joint learning might not be optimal

The 16th NTCIR Conference. Jun 14–17, 2022, Tokyo, Japan



# Conclusion

- Investigate the performance of the claim detection task with various numerical formats in the FinNum-3
- Results
  - Numerals are informative in the claim detection task
  - Best numerical formats depends on the models and settings
  - Joint learning is effective in some cases
- Future works
  - Statistical analysis for the effect of formats
  - Investigating optimal setting of joint learning