

NTTD at the NTCIR-16 Real-MedNLP Task

Shuai Shao, Gongye Jin, Daisuke Satoh, Yuji Nomura

NTT DATA Corporation

© 2022 NTT DATA Corporation

Overview

- We participated in the Subtask1-CR-JA & Subtask1-RR-JA, which were NER tasks with limited labeled data of Japanese medical documents.
- We trained 2 models respectively with augmented labeled data to extract named entities from the provided Japanese case reports and radiographic reports.
- From the aspect of Entity-F1 of all entities, our models ranked 2nd in Subtask1-CR-JA and 3rd in Subtask1-RR-JA.

2

Challenges & Approaches

- Challenges:
 - Deep Learning applications need a huge amount of data, and Japanese medical documents are relatively difficult to acquire and annotate.
 - > The inconsistency in a small dataset may affect models' output. ^[1]

- Approaches:
 - To assure the annotation quality
 - > To reduce the necessary data volume

[1] Qingkai Zeng, Mengxia Yu, Wenhao Yu, Tianwen Jiang and Meng Jiang. 2021. Validating Label Consistency in NER Data Annotation. arXiv preprint arXiv:2101.08698.

3

Our approach

Annotation inconsistency correction Data augmentation method(synonym replacement^[1])

[1] Xiang Dai and Heike Adel. 2020. An Analysis of Simple Data Augmentation for Named Entity Recognition. In Proceedings of the 28th International Conference on Computational Linguistics. [2] Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif Rasul, Stefan Schweter, and Roland Vollgraf. 2019. Flair: An easy-to-use framework for state-of-the-art nlp. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pages 54–59. aclweb.org. **NTT DATA**

© 2022 NTT DATA Corporation

Annotation Inconsistency Detection

- Showing entities labeled with different tags in KWIC (Keyword in Context)
- Manually correcting inappropriate tags

Labels	Sentences				
a	<a>口腔粘膜および口唇 に広範囲に糜爛				
	Widespread erosions of <a>oral mucosa and lips				
a	<a>顔の一部と口腔粘膜 にびらんを認めた				
	Erosions on part of the <a>face and oral mucosa .				
(missing)	豆腐と比べて 口腔粘膜 からの吸収性が良く				
	Better absorption from the oral mucosa compared to tofu				

Data Augmentation by Synonym Replacement

- > Using a binomial distribution to determine whether each token should be replaced.
- Using synonyms from WordNet to replace a token.

	Sentences				
Original	今回は 眼瞼 周囲の 浮腫 ,紫斑と呼吸困難のため緊急入院した。				
	This time, the patient was urgently hospitalized because of periocular edema, purpura and dyspnea.				
Augmented by SR	今回は 目縁 周囲の 水症 ,紫斑と呼吸 作用波乱の悧巧事変 入院した。				
	This time, the patient was hospitalized for the obedient incident of periorbital hydrops, purpura and				
	respiratory disturbance.				

Results

 Results of a 3-fold validation experiment (dividing CR training data into 3 pairs of training and test sets by ratio of 8:2)

Official Results of Entity level

Subtask	Р	R	F1	Rank
CR-JA	62.26	61.53	61.89	2
Others' Best	61.96	68.91	65.25	
RR-JA	86.96	87.09	87.03	3
Others' Best	89.07	89.45	89.26	

Conclusion

- Annotation inconsistency detection & simple synonym replacement can boost the NER model's performance even in the field which needs high level of expertise.
- Specific augmentation strategy on different tag types & ensemble of multiple augmentation methods should be considered.

Thanks for your attention!

Any questions?

Please Contact: Shuai.Shao@nttdata.com

NTTData

Trusted Global Innovator

© 2022 NTT DATA Corporation