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Social Media Adverse Drug Event Detection (SM-ADE) Subtask.
• To identify a set of symptoms caused by a drug (ADE; 副作用) from short messages written by social media users
• Social media corpus covering 17 drugs x 22 symptoms in four languages (Japanese        , English        , German        , and French        )

Social Media Corpus.
• Generated 11,000 short messages in Japanese       using 

a pre-trained language model (T5)
Each tweet was manually checked and annotated with a positive (1) or negative (0) label for each ADE symptom

• Translated the corpus into English       , German       , and French       by machine translation (DeepL) with manual check
All language share the same ADE symptom label(s) and each subset consists of 9,957 messages; 80% training (7,964 messages) and 20% test (1,993 messages)

Evaluation Metrics.
• Full: The performance over ADE labels (0 or 1)

- Exact Match Accuracy
- Per ADE Label: Precision, Recall, and 𝐹1 score for 
each label (0 and 1) across samples and classes

• Individual: The performance across symptoms
- Per Symptom Class: Precision, Recall, and 𝐹1 score 
for each class

• Binary: How well models can detect examples
containing ADEs independent of symptoms

Participant Systems and Performance.
• 8 teams finally submitted their results (+Baseline)

- 5 of them challenged all languages and all teams 
challenged the English track

- Most teams ensembled models from multiple seeds
• Overall: Desirable improvements in medical 

applications
Compared to our baseline, F1 improved by around
~5%; some improved ~10+% Recall in positive class

• BUT: All results are within the range of around 0.8 in 𝐹1 

Model Extra data

SapBERT no

XLM-RoBERTa no

GPT-3.5, XLM-RoBERTa data aug.

BERT, GPT-3.5, GPT-4 data aug.

BERT, XLM-RoBERTa no

VADER, BERT no

BERT, ClinicalDistilBERT no

mBERT, RoBERTa, 
DeBERTa, XLM-RoBERTa no

BERT, RoBERTa, XLM-
RoBERTa no

Results of the Binary Score for teams in each language trackApproaches

Results of the Per Symptom Class setting evaluation for all teams in the English track

Remaining Issues.
• Generated messages are not perfect: how to do it better?

Some are medically dubious and translated often “sound” Japanese, despite being English/German/French
• How to get the privacy free data?

If you have any suggestions, please contact us! 
Web: https://sociocom.naist.jp/mednlp-sc/   

E-mail: mednlp-sc@is.naist.jp


