

NTCÍR

CIR at the NTCIR-17

Unbiased Learning to Rank Evaluation Task 2 (ULTRE-2)

Lulu Yu, Keping Bi, Jiafeng Guo, Xueqi Cheng Institute of Computing Technology (ICT), Chinese Academy of Sciences (CAS) CAS Key Lab of Web Data Science and Technology

• Learning to Rank

• Unbiased Learning to Rank

• NTCIR-17 ULTRE-2 task

Motivation & Methods

• non-clicks do not mean irrelevant ⇔ false negative issue

Non-clicks: false negative issue

Label Correction

correct the labels for non-clicked items by a relevance judgment model trained from DLA

• Negative Sampling

- "click-only" scheme: preserve clicked results
- "last-click" scheme: preserve all the results before the last clicked result

Experiments & Results

- Experimental implementation
 - Input features
 - for label correction method
 - traditional features of 13 dimensions
 - pretrained score
 - for negative sampling method
 - extracted traditional word matching features (e.g. LM-DIR, BM25) of 24 dimensions
 - Model architecture
 - Feature projection: project features to a higher dimension
 - Ranking model: a deep neural network with three hidden layers

- Effect of Negative Sampling
 - ➤ We investigate the use of negative sampling on the validation set.
 - ➤ The nDCG@10 on the validation set indicates that this approach

is effective in improving performance.

Performance curves of two schemes ("click-only" and "last-click") w.r.t. the number of random and hard negatives. (a) Performance curves of two schemes w.r.t. the number of random negatives. (b) The Performance curve of the "clickonly" scheme w.r.t. the number of hard negatives.

Results

- Effect of Label Correction
 - DLA with Label Correction outperforms the basic DLA model, under various strategies.
 - \succ The underline denotes the performance of the baseline DLA.

	Model	test	nDCG@10 total valid	20% valid	DCG@10 test
Ī	Scratch-DLA-LC (sig)	0.5355	0.5019	/	11.4538
	Aux-DLA-LC (sig)	0.5326	0.5015	/	11.3898
	Scratch-DLA-LC (min)	unk	0.4816	/	unk
	Aux-DLA-LC (min)	unk	0.4947	/	unk
	DLA	0.5247	0.4920	/	11.2031
	IgbBase	0.5350	/	0.5003	11.4794
_	lgbBaseAdd	0.5333	/	0.5021	11.4616

- We focus on the false negative issue and propose two approaches to tackle this issue: label correction and negative sampling.
- Both methods can enhance the model performance and our best method (label correction) has achieved nDCG@10 of 0.5355, which is 2.66% better than the best score from the

organizer.					_	Team	Submitted run	nDCG@10
							click-point	0.3326
)(-1-1		- D00 010		D00.010			click-pair	0.5100
Model	test	nDCG@10 total valid	20% valid	DCG@10 test		_	click-softmax	0.5144
Scratch-DLA-LC (sig)	0.5355	0.5019	/	11.4538			IPS-PBM	0.5199
Aux-DLA-LC (sig)	0.5326	0.5015	/	11.3898		0	IPS-DCM	0.5131
Scratch-DLA-LC (min)	unk	0.4816	/	unk		Organizer	IPS-UBM	0.4875
Aux-DLA-LC (min)	unk	0.4947	/	unk			DLA-PBM	0.5216
DLA	0.5247	0.4920	/	11.2031			V	
lgbBase	0.5350	/	0.5003	11.4794			DLA-DCM	0.5199
lgbBaseAdd	0.5333	/	0.5021	11.4616			DLA-UBM	0.5196
							PRS	0.4970

Thanks!

