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Background
• NTCIR-17 ULTRE-2 task
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Motivation & Methods



Motivation
• non-clicks do not mean irrelevant  false negative issue
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Methods

• Label Correction

Ø correct the labels for non-clicked items by a relevance judgment model trained from DLA
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• Negative Sampling

Ø through negative sampling → reconstruct the original result lists
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Ø “click-only” scheme: preserve clicked results

Ø “last-click” scheme: preserve all the results before the last clicked result 
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Experiments
• Experimental implementation

• Input features

• for label correction method

• traditional features of 13 dimensions

• pretrained score

• for negative sampling method

• extracted traditional word matching features (e.g. LM-DIR, BM25) of 24 dimensions

• Model architecture

• Feature projection: project features to a higher dimension

• Ranking model: a deep neural network with three hidden layers



Results
•  Effect of Negative Sampling

Ø  We investigate the use of negative sampling on the validation set. 

Ø The nDCG@10 on the validation set indicates that this approach 

      is effective in improving performance.

Performance curves of two schemes 
("click-only" and "last-click") w.r.t. the 
number of random and hard negatives. 
(a) Performance curves of two schemes 
w.r.t. the number of random negatives. 
(b) The Performance curve of the "click-
only" scheme w.r.t. the number of hard 
negatives.



Results
•  Effect of Label Correction
Ø  DLA with Label Correction outperforms the basic DLA model,
      under various strategies.
Ø The underline denotes the performance of the baseline DLA.



Conclusion



Conclusion
• We focus on the false negative issue and propose two approaches to tackle this issue: 

label correction and negative sampling.

• Both methods can enhance the model performance and our best method (label correction) 

has achieved nDCG@10 of 0.5355, which is 2.66% better than the best score from the 

organizer.
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