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ABSTRACT
The FRAG team participated in the Social Media (SM) subtask of
the NTCIR-17 MedNLP-SC Task [13]. Our approach involved fine-
tuning a multilingual transformer-based model on the train set. The
team ranked 3𝑟𝑑 for English (SM-ADE-EN), German (SM-ADE-DE)
and Japanese (SM-ADE-JA) based on Exact accuracy and Binary
scores.
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1 INTRODUCTION
Prescribed by doctors, medicines are part of daily life for many
people throughout the world. Yet, there is always a risk involved
in taking medication. One of these risks is an Adverse Drug Event
(ADE). It is "an injury resulting from the use of a drug. Under this
definition, the term ADE includes harm caused by the drug (adverse
drug reactions and overdoses) and harm from the use of the drug
(including dose reductions and discontinuations of drug therapy)" [9].

An example of ADE mention, taken from the ADE Corpus v2 [6]:
"An 11-day-old infant became lethargic and apneic after a single drop
of brimonidine". Since ADE can be dangerous to patients and a
source of morbidity and mortality, hospitals and doctors need a
system to support them in monitoring ADE occurrences in a fast
and scalable way. To do so, Natural Language Processing (NLP) has
been leveraged and has shown promising results [8].

1.1 Task description
The MedNLP-SC Social Media subtask addresses ADE detection
from social media texts in four languages: Japanese (SM-ADE-JA),
English (SM-ADE-EN), German (SM-ADE-DE) and French (SM-
ADE-FR). There are 7965 synthetically generated tweets and we
have to:

(1) identify the texts mentioning ADE,
(2) label the text with at least one of the 22 ADEs observed.
The training corpus is imbalanced: for each language 68.58% of

the data did not have an ADE. Among the texts in the corpus that
mention ADE, 53.19% had single label and among them 11 classes
appeared in 80% of the messages with the ‘diarrhea’ label at 17.28%.

One can find thorough details on the dataset in the task overview
paper [13].

We approached the task as a multi-label classification task rather
than an entity detection one.

2 RELATEDWORK
Rawat et al. [11] used CNN to do binary classification (ADE vs. no
ADE) on text extracted fromMEDLINE. Zhang et al. [19] worked on
binary classification. They trained a SVM on data scraped from Dai-
lyStrength and Twitter. Wunnava et al. [18] used a dual-attention
network to perform joint task of ADE classification and NER. Wu
et al. [17] created a tool composed of BERT, bi-LSTM-CRF [7] to
identify ADE as named entities in the unstructured section of Chinese
ADR reports from the ADR monitoring center of Jiangsu Province in
2010-2016. There are also works onADR classification [1, 2, 5, 12, 14].
COLING hosted a similar shared task, SMM4H Task 1a [15], where
the tweets in English containing ADE had to be identified. Most of
the participants used BERT based models.

3 METHODS
First, we added a boolean column to the English dataset to state
if there was at least 1 ADE or not. Then we separated 10% of
the messages as validation set using scikit-learn’s [10] stratified
train_test_split. We used the train-ids of English train and vali-
dation set to split the corpus for other languages. We combined
train set of all the languages into a single dataset and we did the
same with validation set. We fine-tuned a multi-lingual BERT [4],
bert-base-multilingual-cased1, and a multi-lingual RoBERTa [3],
xlm-roberta-base2 using Huggingface [16].

The parameters that have been used to fine-tune the two models
are presented in Table 1. Except for the batch size, all the parameters
are the huggingface defaults.

Table 1: Fine-tuning parameters.

bert-base-multilingual-cased xlm-roberta-base
max length3 128 128
learning rate 2e-5 2e-5
weight decay 0.01 0.01

epochs 10 10
batch size 16 32

At every epoch we computed the f1 for binary classification
(ADE vs. no ADE). Around 4th epoch the eval loss for both models
start rising and the eval f1 remains flat (See Figure 1 and Figure 2).
1https://huggingface.co/bert-base-multilingual-cased
2https://huggingface.co/xlm-roberta-base
3https://huggingface.co/docs/transformers/main_classes/tokenizer#transformers.
PreTrainedTokenizer.__call__.max_length
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For the first submission, we fine-tuned the multi-lingual BERT
with the default parameters on all four languages combined without
any preprocessing. We fine-tuned xlm-roberta in the same manner
for the second. We chose the number of epochs arbitrarily as 6 for
both submissions. Other parameters are those mentioned in Table 1.

Figure 1: BERT Fine-tuning

Figure 2: XLM-RoBERTa Fine-tuning

4 EXPERIMENTS
Unknown to us, the organization team had used fine-tuned xlm-
roberta as their baseline. The only difference between these two
models is the number of training epochs. The Tables 2 to 4 compare
our model (Frag) with the winning team (Srcb) and the baseline
(XLM-R_all).

Table 2: Binary Scores (ADE vs. no ADE) results.

Team Japanese English German French
Srcb 0.881 0.872 0.873 0.869
Frag (Submission 1) 0.83 0.82 0.82 0.82
Frag (Submission 2) 0.868 0.855 0.846 0.845
XLM-R_all 0.850 0.846 0.815 0.828

Table 3: (Full) Per Label Scores results.

Team Japanese English German French
Srcb 0.910 0.905 0.908 0.902
Frag (Submission 1) 0.87 0.87 0.86 0.86
Frag (Submission 2) 0.900 0.885 0.880 0.874
XLM-R_all 0.885 0.876 0.852 0.862

Table 4: Exact Match Accuracy results.

Team Japanese English German French
Srcb 0.878 0.869 0.864 0.866
Frag (Submission 1) 0.821 0.817 0.804 0.801
Frag (Submission 2) 0.858 0.841 0.833 0.828
XLM-R_all 0.837 0.828 0.803 0.806

5 CONCLUSIONS
We presented a finetuned multi-lingual RoBERTa model to identify
tweets mentioning ADE. These social media texts were generated
using a T5 model. Our model was an exact replica of the baseline
(XLM-R_all) except it was finetuned to 6 epochs instead of 10. This
small variation in the training made a big difference in the final
ranking. The fact the models (of all the participants) scored the high-
est for Japanese and the lowest for French on all metrics is worth
exploring. Lastly, it would be interesting to see how these models
trained on synthetic data compare against the models trained on
human generated social media texts.
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