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ABSTRACT
As the demand for personalized data retrieval systems continues to
grow, recent research has emphasized the development of lifelog
retrieval mechanisms. Many new research and methods have fo-
cused on studying the integration of user interactions and feedback
into search engines. In this paper, we introduce the automation
approach of LifeInsight, a retrieval system designed explicitly for
the NTCIR-17 Lifelog-5 Automatic Task, facilitating a seamless
search experience and efficient data mining. Our method entails a
two-fold process, where we first enrich the metadata from the raw
query, followed by the composition of the retrieval method from
input entities. Our proposed system not only enhances the search
process but also ensures a comprehensive and detailed analysis of
lifelog data for diverse applications. By focusing primarily on the
automatic sub-task, we demonstrate the efficacy of our LifeInsight
retrieval algorithm, showcasing competitive results that rival those
of an expert user.
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1 INTRODUCTION
The advance of wearable sensors and mobile devices could now
enable seamless data recording during daily life. This results in a
large-scale multimodal personal data collection, also referred to
as the lifelog data [12], spanning different types of data, including
images, videos, locations, activities, etc. By analyzing this personal

data collection, many potential applications could be proposed to
both support humans in daily activities and provide insights into an
individual’s life. One of the popular applications usually proposed
by harnessing the lifelog data is to develop a memory prosthetic
that could retrieve the desired life events based on what remains in
an individual’s memory about these moments. It is also the main
focus of the Lifelog Semantic Access Task (LSAT) that has been
proposed in the NTCIR-Lifelog challenges for four years [9–11, 30]
which motivates the research community to search for the most
optimal solutions for the lifelog moment retrieval problem.

The fifth NTCIR-17 Lifelog [31] continues to push the boundaries
of lifelog moment retrieval task by introducing a new large-scale
lifelog dataset, which spans up to three years of seamless data
recording. There are 41 queries with two query types (ad-hoc and
known-item search) for two main sub-tasks in the NTCIR-17, which
are the automatic sub-task and the interactive one. While the in-
teractive sub-task aims to evaluate the retrieval efficiency and the
usability of the interactive lifelog retrieval systems, the automatic
sub-task focuses on evaluating the performance of the retrieval
algorithm used to solve the queries without the human-in-the-loop.
For the interactive sub-task, the experiment configuration stated by
the organizers allows the participants to spend five minutes at most
for each query. In total, it would take approximately 3 hours and
40 minutes to solve all the queries in this NTCIR-17 Lifelog, while
it would take less than three minutes to find the desired moments
without human evaluation. Therefore, in this paper, we concentrate
on the automatic sub-task to evaluate the performance of the LifeIn-
sight retrieval algorithm with some novel proposed improvements.
Our automated methodology has outperformed existing automated
processes, delivering competitive results comparable to those of
an expert user. Our main contributions to the enhancement of the
lifelog moment retrieval system without human-in-the-loop are:
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(1) EnrichingMetadata: AnObservationExpansionmethod.
Our approach initiates with an observation expansion pro-
cess, wherein we leverage both traditional and potential
techniques to enrich the metadata and extract nuanced infor-
mation from the raw query. Employing Semantic Role Label-
ing (SRL), our system autonomously extracts pertinent enti-
ties, enhancing the understanding and depth of the lifelog
data. Additionally, we integrate the Large Language Model
(LLM) to extract temporal events, irrespective of specific
time references, ensuring a comprehensive and contextually
rich analysis. The generated comprehensive prompts and
their variants further enhance the depth and breadth of the
prompt generation process, contributing to a more holistic
retrieval process.

(2) Automatic Composer: Integrating Input Entities for
Efficient Retrieval. Building upon the enriched metadata,
our system presents a general composition method that uti-
lizes input entities to formulate a precise and effective query.
By generating queries from all available entities and their
respective prompts, we employ a preliminary heuristic to en-
sure the formulation of accurate search queries. This ensures
that the lifelog data retrieval process is not only efficient but
also comprehensive, catering to a wide range of user needs
and requirements.

2 RELATEDWORK
The automatic retrieval of lifelog data has garnered significant at-
tention in recent years, aiming to facilitate efficient information
extraction from personal multimedia databases. In this section, we
discuss prior research efforts that have contributed to the develop-
ment of advanced systems for lifelog data retrieval, with a particular
focus on approaches, enriching metadata, and composing queries
from input entities.

There is a vast development in creating competitions to foster
the development of interactive retrieval systems. Prime examples of
such challenges are the NTCIR-Lifelog task[14], Lifelog Search Chal-
lenge [13] and ImageCLEF lifelog[6]. Various methodologies have
been documented through the years, encompassing the utilization
of diverse vector databases for storage and retrieval, for example,
Lifegraph [24] and LifeConcept [3]. These frameworks have effec-
tively leveraged knowledge graphs and concept recommendation
methods to streamline the retrieval process by establishing intricate
connections between pertinent concepts and associated images.

Recently, an emerging trend involves the integration of vision-
language pre-trained models, with particular emphasis on the CLIP
model [23]. Noteworthy implementations of this approach include
LifeSeeker 4.0 [20], E-Myscéal [28], Memento 2.0 [1], FIRST 3.0
[16], and Voxento [2]. Evaluating the outcomes of methodologies
employing vector databases, a significant enhancement in zero-shot
image-text retrieval performance has been observed compared to
their earlier versions.

Furthermore, there are advanced systems focused on visual con-
tent analysis through the creation of extensive meta-data sets, such
as lifeXplore [17], PhotoCube [26], and LifeMon [8]. These systems
utilize technologies like YOLOv4 [5] and other traditional object
detectors based on convolutional neural networks (CNNs).

In addition, there are groundbreaking initiatives in the field of vi-
sual content analysis that involve the generation of extensive meta-
data. Projects like lifeXplore [17], PhotoCube [26], and LifeMon
[8] have employed convolutional neural networks (CNNs), includ-
ing YOLOv4 [5], alongside traditional object detectors. On another
note, the pioneering system FIRST [15] has spearheaded the devel-
opment of context-based suggestions using the Large Language
Model (LLM) across various scenarios.

There are many research works in Natural Language Process-
ing (NLP) related to analyzing natural queries in lifelogging. For
instance, Semantic Role Labeling helps highlight specific items and
has emerged as a promising method for pinpointing entities, mak-
ing searches more focused. Additionally, large language models
using zero-shot learning can help with tasks like Named Entity
Recognition (NER) and Information Extraction (IE). Lou et al. [19]
suggested a new way to tackle IE tasks, while GOLLIE [25] envi-
sioned IE tasks through the lens of a programming schema language
model, outperforming others in this areas.

3 LIFEINSIGHT AT THE NTCIR-17 LIFELOG-5
Unlike the system in the usual interactive track, our approach for au-
tomating the process relies entirely on mirroring the typical search
behavior of a user within the system. This involves the explicit
incorporation of features and the translation of implicit, intuitive
actions into precise system actions. Consequently, our paper intro-
duces two primary contributions to observation expansion. Firstly,
we present a method for extracting semantic content to facilitate
named entity recognition, thereby serving as a weighting filter.
Secondly, we propose a context-based prompt generation mecha-
nism inspired by FIRST [15], aiming to enhance the diversity of
search queries by generating potential contexts for the description.
Additionally, we proposed a method for generating search queries
from multiple pieces of information and combining them to yield a
final result.

3.1 System Overview for Automatic
Our automated flow is designed to be an extension of LifeInsight in-
teractive version. It uses the results of multiple predefined strategies
and generative strategies to produce the final results. The results
are refined over numerous rounds of search, revision, and query
generation. Figure 1 illustrates the entire search process.

The interactive system [21] that we have built before acts as a
Search Interface Module in our search flow. This module serves
as an interface to convert composed queries into database query
language. A concise overview of our system is provided in Section
3.2.

Our system is composed of two key elements. The initial com-
ponent, known as the Observation Interpreter, is responsible
for extracting potential facts and creating different prompts from
the provided query. It comprises two sub-components: a metadata
extractor that identifies relevant entities and terms and a prompt
generator that diversifies the input prompts. These components
play a critical role in the analysis, providing informative observa-
tions that enable the handling of a vast array of comprehensive
information. Further insights into this process will be outlined in
Section 3.3 and Section 3.4, respectively.
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Figure 1: Overview: the narrative undergoes an observation
interpretation process, enabling the extraction of vital enti-
ties and pertinent contexts. Subsequently, these entities are
integrated within a filter alongside various prompt versions
and temporal information by the composer, thereby generat-
ing queries tailored for the LifeInsight system. Finally, the
fuse operation amalgamates results from multiple query it-
erations to yield an optimal outcome.

The remaining component called Query composer consists
of multiple algorithms that quantify and analyze the observation,
which is then passed after generating variants and extracting pieces
of information from the raw query. This helps to construct new
queries with more feasible contexts and then merge all the return
lists as a final answer. More details about this process will be pre-
sented in Section 3.5.

3.2 Search Interface
The search interface module helps translate the input query into
database query language, whereas the query can be text or images.
However, in the automatic subtask, the system consistently inter-
prets the input query as text. This text undergoes processing by
LifeInsight, which autonomously converts it into conceptual data.
This encompasses various elements such as location, object, trans-
portation, and color. The text may also contain temporal data, which
can be segmented and utilized via a temporal query mechanism to
enhance LifeInsight’s performance.

Following this, these semantic particulars are converted into
visual and semantic vector embeddings through computing en-
gines. The visual embeddings are subsequently inputted into the
Milvus[29] vector database for search operations, while the con-
cepts aid in filtering through Elasticsearch[7].

At the end, the module returns top-k relevant images that have
the highest score of matching the input original query.

3.3 Metadata Extractor
Filters are essential components of many search systems, allowing
users to narrow down their results by specific criteria. As they help
to understand the user’s intent, filters are the first component to be
focused on when automating the search process. In the choosing
filter stage, users have specific intentions, such as finding results

related to a particular location, time, or objects that could appear
in the scene. This could be considered a named entity recognition
(NER) problem, where the goal is to identify the correct term for
each field of the query’s informative subject.

To automatically identify entities in a lifelog query prompt, we
propose a highly adaptive method that combines traditional NLP
processing and LLM models to zero-shot learn self-defined labels.
This approach is motivated by the fact that conventional NLP mod-
els do not adapt quickly to new entities, while LLM models are
more flexible and can learn new concepts from a few examples.
Figure 2 describes the detailed process of our proposed method.

Figure 2: Initially, all candidate events are classified into tem-
poral relationship labels (including before, present, and after)
using an LLM model. Then, candidate entities are extracted
from each event using a traditional NLP model. Additionally,
for each proper noun identified in the previous stage, the
LLM describes a comprehensive details sentence. Once all the
candidate entities have been classified, special entities, like
proper noun phrases or brand labels, are processed through
the LLMmodule to articulate the unique features of the logo
design. Finally, the labeled and described events are delivered
as an output observation.

The proposed method has several advantages over traditional
NLP methods. First, it is more adaptive to new entities, as it does
not require a large labeled dataset for training. Second, it is more
accurate, as it leverages the power of LLM models to learn complex
patterns of entities. Furthermore, it can demonstrate some specific
terms as an expert user.

3.3.1 NLP-based extraction method. Natural language processing
(NLP) techniques such as semantic role labeling (SRL) and part-of-
speech (POS) tagging can extract valuable and specific entities from
lifelog data based on the position and type of words in a sentence.
To take advantage of these NLP techniques, Stanza [22], a library
for natural language processing maintained by the Stanford NLP
group 1 is used.

The results of our model include 18 labels 2. Some of the outputs
we selected include geographical location, person name, organiza-
tion name, album name, artwork, date, and location facilities such
1https://nlp.stanford.edu/
2Stanza document
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RAW INPUT: The train was a marklin brand train and the
lifelogger bought it at the weekend.

OUTPUT:
the weekend : DATE ; marklin brand train : OBJECT
lifelogger : OBJECT ; train : OBJECT

TRUECASE INPUT: The train was a Marklin brand train
and the Lifelogger bought it at the weekend.

OUTPUT:
the weekend : DATE ; Marklin : PRODUCT
Lifelogger : PRODUCT ; train : OBJECT

Table 1: A comparison between the use of true case and non-
true case is evident from the case of the keyword "Marklin"
being misrecognized. With true casing, "Marklin" has been
correctly identified as a PRODUCT, enabling the use of a
visual describer for detailing its attributes. The example
demonstrates that nearly all the entity words are appropri-
ately tagged as proper nouns with the accurate entity label.
Nonetheless, the model encounters difficulty in truecasing
"Lifelogger," interpreting it solely as a proper noun. This par-
ticular term poses a considerable challenge since "lifelogger"
is utilized exclusively by the dataset in the provided query.

as buildings, airports, highways, and bridges. Using an efficient SRL
model to extract meaningful entities from the data with a speci-
fied concept, we can create filter fields that are more specific and
relevant to the lifelog data.

However, NLP models are also susceptible to errors, especially
in caseless cases, when influenced by the user’s typos. This often
happens because the user does not pay attention or does not think
it is essential to the analysis model. Example 1 depicts the results
of the prediction model in two cases. After using the proper case
normalization method, the results are more reasonable.

3.3.2 LLM-based extraction method. Two pivot challenges faced
when researching simulating expert user behaviors is the existence
of expected behaviors from users that cannot be achieved in com-
mon NLP tasks. These include:

(1) Separation of sub-queries from a single query that contains
multiple details that do not describe the same scene. This
is necessary because search engines are essentially model-
centric, meaning they can only understand a captured scene
at a specific time. Therefore, users must interpret the scene
visually and grasp the essential keywords in the metadata
fields. This separation can be based on the time and amount
of visual information in the sentence.

(2) Recognition of details of brands, products, and organizations
not included in the sentence to refine and interpret those
details appropriately. This is necessary because we can have
supporting knowledge for some proper names. This depends
significantly on howwell the user understands the individual
phrases in the data. For example, the abbreviation "VNA"
for airline tickets can be interpreted as "Vietnam Airlines";

the logo of a global brand could be described with color
information or special features; for example, the "Gucci"
logo could be demonstrated as a distinctive shape made of
two capital G’s, which are intertwined.

To address the inquiries above, a large language model (LLM) is
used as an expert to focus on significant objects in the description.
This enables the LLM to comprehend the implicit meanings of
the instruction that many NLP models cannot yet handle, such as
temporal relationship extraction and identifying the key events in
a query.

INPUT:
The lifelogger was watching the Beatles’ rooftop
concert on TV (not in music metadata). The lifelogger
was at home watching YouTube on TV for about
90 minutes, after doing some computer work at home.

PRESENT:
The lifelogger was watching the Beatles rooftop
concert on tv
BEFORE:
The lifelogger was at home doing some computer work
AFTER:
The lifelogger was at home watching YouTube on TV
for about 90 minutes

Table 2: Temporal extraction module categorizes input data
into distinct temporal classes (before, present, after) and
effectively eliminates temporal information from the ex-
tracted event representation ("after doing")

To allow the automatic system to describe some details of well-
known brands or products based on knowledge, an interaction
between an LLM model and an external engine is used to find more
information about potential keywords and describe the abbrevia-
tions, which contain crucial information. One example of how the
logo descriptions contribute to our system is shown in Table 3.

Nevertheless, one of the persistent challenges pertains to ef-
fectively parsing the generated outputs into structured language
conforming to specific system requirements. In this context, the pi-
oneering work LMQL [4], a novel solution aimed at facilitating the
seamless control of token generation and parsing of output results.
This framework promises to enhance the overall efficiency and
effectiveness of language model-based methods, thereby enabling
smoother communication with our system.

3.4 Context-based Prompting
Using subqueries to obtain an overview from multiple perspectives
is a crucial step in locating the search answer. This process neces-
sitates some expertise in extracting information from the original
3prompt to create a new narrative of the object being sought. This

3Throughout this section, the term "prompt" refers to a natural language description,
while the term "query" denotes a structured message encompassing natural language
description, filtering, and temporal structure. This distinction is made to prevent any
potential confusion between the two terms.
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NARRATIVE: The train was a Marklin brand train
and the lifelogger bought it at the weekend.
INPUT: Marklin

OUTPUT: A bold, red wordmark "Märklin" with a
stylized "M" and a red stripe above and below.

NARRATIVE: Moments that show the lifelogger was
meeting friends outside a bar called the Brazen Head,
before walking to another bar for drinks.
INPUT: Brazen Head

OUTPUT: The Brazen Head logo in Ireland is
a blue shield with a gold harp, surrounded by a gold wreath.

Table 3: LLM describer articulates visual attributes of a logo
of a provided brand, facilitating a comprehensive understand-
ing of the logo characteristics through its knowledge base.

could entail extracting a subset of information that refers to an
event, employing various query techniques, generalizing details to
improve the model’s comprehension, or simply selecting key de-
tails. An expert user can flexibly apply various skills to find search
targets for themselves.

To imitate effective prompt generation, we define the following
concepts: global context prompt generation and local context aware
prompt generation. We then use these concepts to visualize how to
generate new prompts. Finally, we dive deep into how to use filters
and the temporal search feature in the finding process.

To generate a diverse and relevant corpus of queries, we propose
two concepts: global and local context awareness. Global context
awareness considers the context in which a prompt is likely to
occur, while local context awareness considers various ways of ex-
pressing the same meaning. FIRST [15] approach also identifies two
corresponding definitions for prompting: deductive suggestion and
abductive suggestion. The difference between prompt generation
types shown at 4

3.4.1 Local context awareness prompting. Local context awareness
allows us to express information in many different ways. Given a
piece of information, there are multiple ways to infer its meaning,
while different ways of ordering the concepts or changing the level
of detail of the prompt can all have an impact on the result. Our
goal is to generate sentences that keep the same meaning and
components but create multiple versions of them.

3.4.2 Global context awareness prompting. Global context aware-
ness allows us to find multiple possible cases for a prompt. We often
need to make an educated guess and try different scenarios. The
large language model (LLM) should try to find the most likely sce-
nario based on its knowledge and the information it can access from
multiple sources. It can artfully craft these identified factors into
an entirely novel prompt, thereby demonstrating its proficiency in
contextual analysis and generative capabilities. This level of context
awareness not only enriches the model’s problem-solving aptitude
but also enhances its versatility in generating contextually relevant
and coherent responses.

INPUT PROMPT:
It was at home and there were a few people at the BBQ.
The lifelogger had driven home before cooking lots of
different foods on the BBQ.

GLOBAL CONTEXT PROMPTING:
Capturing the cooking process and the interactions at
a home BBQ, as the lifelogger prepares a variety of
delicious foods.

LOCAL CONTEXT PROMPTING:
At home, there were a few individuals at the BBQ.
The lifelogger had driven home before cooking many,
different dishes on the grill.

Table 4: A comparison between prompt generation. Illustrat-
ing the distinctions in prompt generation methodologies.
In the case of glocal context prompting, the model intro-
duces a variant, termed ’lifelogger prepares’, while in the
local context, certain words such as ’BBQ’ and ’grill’ remain
synonymous and unchanged, which contextual sentence co-
herence is preserved throughout the generation process.

3.5 Query composer
In this part, we proposed a general framework that could mimic
the searching techniques of experts. In particular, we focused on
the use of generated prompts, which are short phrases or questions
that are used to guide a search engine. We also incorporated filters
into our search process, which allowed us to refine our results
and exclude irrelevant information. Additionally, time awareness
was considered in query generation, which allowed the authors to
describe their query at a time range, making it less complex for the
search engine to understand. By carefully considering all of these
factors, we devised a simple and effective search process, illustrated
in algorithm 1.

Algorithm 1 Query composition process

1: function GetResults(text)
2: temporal← temporalExtractor(text)
3: metadata← metadataExtractor(temporal)
4: totalFilter← refineFilter(metadata)
5: variants← generatePrompts(text)
6: results← []
7: for filter in comb(totalFilter) do
8: results.𝑎𝑝𝑝𝑒𝑛𝑑 (search(variants, filter))
9: rankedList← reRank(results)

return rankedList

Since there is no ability to interact with the system compared
to interactive tasks, the filters generated by the Metadata extractor
can be erroneous, or the queried filter may not be present in the
dataset’s metadata. This can lead to the elimination of query results.
To mitigate this, we perform pre-processing to eliminate filters
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that can potentially return empty results before they are used for
searching in the retrieval system. Then, combinations of filters are
generated along with generated prompts to create queries that are
inputted into the system. Combinations of filters are generated
by gradually removing filters in a specific order based on their
potential impact on the results. Through experimentation, we have
determined the optimal order as follows: location→ OCR→ time
→ concept. This approach involves iteratively removing filters and
conducting searches until a sufficient amount of information is
obtained. It is crucial to strike a balance and avoid removing too
many filters, as this can lead to results that do not align with the
query description.

The results are aggregated and re-ranked, similar to the AI-
assisted crowd-sourcing mode of Query Assistance described in
LifeInsight [21]. In short, the formula is:

𝑠𝑐𝑜𝑟𝑒𝑥 = 𝑠𝑖𝑚( ®𝑞0, ®𝑒𝑥 ) +
𝑁∑︁
𝑖=1

𝑠𝑖𝑚( ®𝑞𝑖 , ®𝑒𝑥 )

where ®𝑞0 is the embedding vector of the origin query, 𝑁 is the
number of variants generated by LLM, ®𝑞𝑖 is the 𝑖𝑡ℎ variant query
and ®𝑒𝑥 is the embedding vector of image 𝑥 .

4 EXPERIMENT
4.1 Experimental Setup
To evaluate the performance of our proposed methods, we con-
ducted experiments on two datasets:
• LSC’22: This dataset contains various lifelog data, including
images, videos, text, and sensor data. It is a challenging
dataset that has been used to develop algorithms for lifelog
retrieval and analysis for many years.
• NTCIR-17: This dataset is similar to LSC’22 regarding data
types, but it has a different question set. We used this dataset
to evaluate the capabilities of ourmethods on another dataset.
This is also the official dataset of the NTCIR-17 benchmark.

4.1.1 Evaluation Metric. We used several metrics to evaluate the
performance results of our methods, including:
• Mean Average Precision (mAP): Measures the overall
average precision across all queries.
• Precision at K (P@K):Measures the average precision at
the top-K retrieved items for all queries.
• Recall at K (R@K):Measures the average recall at the top-K
retrieved items for all queries.

4.1.2 Experimental Procedure. We experimented according to the
following steps:

(1) Hyperparam tuning: Our system’s performance optimiza-
tion involved the implementation of diverse hyperparameter
tuning methodologies and query generation strategies. Ad-
ditionally, we experimented with different vision-language
models, specifically CLIP [27] and BLIP-2 [18]. Leveraging
the LSC’22 queries, tailored explicitly for Known Item Search,
our primary aim was to ensure precise identification of a
single target object, reflecting the nature of the competition.
As a result, we adopted R@K as the key evaluation metric
for this phase.

(2) NTCIR-17 Dataset Evaluation: We conducted an extensive
evaluation of our trained models using the NTCIR 17 dataset.
Given the diverse nature of the NTCIR challenge, encompass-
ing both ad-hoc and known item search tasks, the evaluation
criteria primarily centered around assessing related items.
Consequently, the evaluation standards employed were P@K
and mAP.

4.2 Experimental results
Table 6 demonstrates our internally evaluated results on the LSC’22
queries, which consist of a total of 14 Known Item Search queries.
We have used the top-k Recall metric for evaluation. Our method-
ology has achieved near-optimal results at 𝐾 = 50 for the Known
Item Search query set, incorporating the contributions above se-
quentially.

Table 5 presents the performance of our automated process on
the NTCIR 17 queries compared to user-generated results. The find-
ings underscore the superior performance of our automated process
over that of typical users, showcasing competitive results in the
category of mean average precision (mAP) relative to expert users.
Notably, our precision metrics, specifically 𝑃@5 and 𝑃@10, indicate
the efficacy of our queries without the need for manual interven-
tion, suggesting that non-expert users employing our system with
informed decision-making could potentially attain performance
akin to that of an expert. Table 7 shows the full results of all our
improvements.

One of the limitation of our approach pertains to the utilization
of filters, which seems to yield a dual effect. For instance, in cases
"in front of the LIDL store," our system identifies the location as
the LIDL store, resulting in the retrieval of images situated inside
the store, thus deviating from the user’s initial search expectations.

5 CONCLUSION
Our automated search system, built upon a foundation of user
behavior mirroring and comprehensive observation expansion,
demonstrates an enhanced capability to process complex search
queries. By integrating semantic entity extraction, context-based
prompt generation, and query composition techniques, our sys-
tem offers an efficient and intuitive approach to automated search
processes. Notably, our system’s performance has surpassed most
existing automated processes, marking a significant leap forward
in the field.
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Table 5: Results of LifeInsight’s runs in NTCIR-17 queries. "U𝑥 - A𝑦" stands for "User 𝑥 using approach 𝑦". More detail in our
interactive paper.

Run # queries
attempted num_q # images

correct/submitted mAP P@5 P@10

Best Auto 41 41 751/3892 0.2924 0.4098 0.3561
Expert 40 41 350/932 0.1640 0.3200 0.2450
U1-A1 40 41 213/951 0.0614 0.2150 0.1725
U2-A1 37 41 226/1221 0.1687 0.2162 0.1676
U3-A1 36 41 374/1181 0.1270 0.3056 0.2528
U4-A1 38 41 282/1024 0.1255 0.2526 0.1974
U1-A2 35 41 291/1285 0.1290 0.2514 0.2286
U2-A2 36 41 182/1121 0.0872 0.2056 0.1611
U3-A2 39 41 208/870 0.1276 0.2923 0.2308

Table 6: R@K for LSC’22 queries. All results of each component are added to the system (SEMANTIC: semantic search,
REPHRASE: using generated prompts, SRL: extracting metadata using SRL, LLM: extracting metadata using LLM, TEMPORAL:
applying temporal search).

Run R@1 R@3 R@5 R@10 R@50 R@100
CLIP_SEMANTIC 0.4286 0.5714 0.7875 0.7875 0.8571 0.8571
CLIP_SEMANTIC_FILTER_SRL 0.5000 0.6429 0.7857 0.8571 0.8571 0.8571
CLIP_SEMANTIC_FILTER_SRL_LLM 0.5714 0.7143 0.8571 0.8571 0.9286 0.9286
CLIP_REPHRASE_FILTER_SRL_LLM 0.7143 0.7857 0.8571 0.8571 0.9286 0.9286
CLIP_REPHRASE_FILTER_SRL_LLM_TEMPORAL 0.7143 0.8571 0.8571 0.9286 1.0000 1.0000
BLIP_SEMANTIC 0.2857 0.4286 0.4286 0.5000 0.5714 0.5714
BLIP_SEMANTIC_FILTER_SRL 0.2857 0.5000 0.5000 0.5000 0.6429 0.6429
BLIP_SEMANTIC_FILTER_SRL_LLM 0.4286 0.5000 0.6429 0.6429 0.6429 0.6429
BLIP_REPHRASE_FILTER_SRL_LLM 0.4286 0.5000 0.6429 0.7143 0.7143 0.7143
BLIP_REPHRASE_FILTER_SRL_LLM_TEMPORAL 0.5714 0.7143 0.7143 0.7143 0.7857 0.8571

Table 7: Results of Automatic LifeInsight’s runs in NTCIR-17. All results of each component are added to the system (SEMANTIC:
semantic search, REPHRASE: using generated prompts, SRL: extracting metadata using SRL, LLM: extracting metadata using
LLM, TEMPORAL: applying temporal search).

Run # queries
attempted

# images
correct/submitted mAP P@5 P@10 P@100

CLIP_SEMANTIC 41 569/4003 0.2055 0.3366 0.2683 0.1388
CLIP_SEMANTIC_FILTER_SRL 41 560/3475 0.2174 0.3659 0.2976 0.1366
CLIP_SEMANTIC_FILTER_SRL_LLM 41 595/3467 0.2136 0.3756 0.3098 0.1451
CLIP_REPHRASE_FILTER_SRL_LLM 41 641/3649 0.2679 0.3756 0.3171 0.1563
CLIP_REPHRASE_FILTER_SRL_LLM_TEMPORAL 41 751/3892 0.2924 0.4098 0.3561 0.1832
BLIP_SEMANTIC 574/4000 0.1560 0.3073 0.2659 0.1400
BLIP_SEMANTIC_FILTER_SRL 41 497/3529 0.1626 0.3171 0.2707 0.1212
BLIP_SEMANTIC_FILTER_SRL_LLM 41 593/3556 0.1647 0.3366 0.2927 0.1446
BLIP_REPHRASE_FILTER_SRL_LLM 41 567/3609 0.1713 0.3366 0.2732 0.1383
BLIP_REPHRASE_FILTER_SRL_LLM_TEMPORAL 41 530/3780 0.1882 0.3268 0.2585 0.1293
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