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ABSTRACT
This paper describes the methods and results of Team KSU for

the UFO task at NTCIR-17. In the TDE subtask, we designed meth-
ods for cell type classification using exhaustive tree structures based
on the spanning sizes of the merged cells in the table. In the TTRE
subtask, we designed methods for cell retrieval based on the cell
class. Scores on the F-measure in the formal run were 95.37% for
ID81 in TDE and 9.18%, 4.08%, and 6.63% for ID99 on the Name,
Value, and Total, respectively, in TTRE. Scores on the F-measure
including the formal run and late submission run were 95.37% for
ID81 in TDE and 32.21%, 27.19%, and 29.70% for ID127 on theName,
Value, and Total, respectively, in TTRE.
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1 INTRODUCTION
Tabular data is a data format commonly used in various docu-

ments along with text, and is an important and indispensable el-
ement for many applications. However, tabular data is described
in various structures, and understanding its content and mapping
it to text is still not easy. The TDE subtask aims to classify each
cell of a table in a given annual securities report into four classes,
while the TTRE subtask aims to select the corresponding cells in
the table associated with a given text in the securities report.

Figure 1 is an example of a table included in a securities report.
As a characteristic of tables included in securities reports, there are
many cases in which monetary units are listed in the upper right
corner of the table, or the sum of monetary amounts, etc., are listed
in a merged cell at the bottom of the table.

This paper describes the methods and results of Team KSU for
the UFO task [3] in NTCIR-17. We focused on the fact that tables in
securities reports have a complex structure created bymerged cells
and indentation in the cells and developed a method to incorporate
this structure into the representation of tables in several ways.

Scores on the F-measure in the formal run were 95.37% for ID81
in TDE and 9.18%, 4.08%, and 6.63% for ID99 on the Name, Value,
and Total, respectively, in TTRE. Scores on the F-measure includ-
ing the formal run and late submission run were 95.37% for ID81 in
TDE and 32.21%, 27.19%, and 29.70% for ID127 on the Name, Value,
and Total, respectively, in TTRE.

Figure 1: Examples of tables included in the Annual Securi-
ties Report

Figure 2: default vertical tree

Figure 3: exhaustive vertical tree

2 DATA COLLECTION AND BASIC ANALYSIS
In order to clarify the guidelines for the construction of the sys-

tem to be implemented, we first analyzed the data collection pa-
rameters of the data set of securities reports in HTML format pro-
vided by the UFO task.

2.1 TDE
Table 1 shows the distribution of datasets in the TDE subtask.

The dataset used in the TDE subtask consists of 442 securities re-
ports in HTML format, divided into 190 and 252 test and train data,
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Table 1: Number of datasets in TDE subtask

document table cell

test 190 1,660 45,499
train 252 2,530 66,369

total 442 4,190 111,868

respectively. There were 1,660 and 2,530 tables in the test and train
data, respectively, and 45,499 and 66,369 cells, respectively.

Figure 4: Histogram of cells contained in the table

Figure 5: Bar chart of cells (less than 50 only) included in the
table

Figure 4 shows a histogram of the number of cells in a table. The
figure shows that the number of cells in a table is mostly less than
51. Figure 5 shows the frequency of tables with less than 50 cells.
From the figure, it is found that the table consists of 11 cells most
frequently.

2.2 TTRE
Table 2 shows the distribution of datasets in the TTRE subtask.

The dataset used in the TTRE subtask consists of 67 securities re-
ports in HTML format, which are divided into 25 and 42 datasets
for test and train data, respectively. There were 1,125 and 1,726 ta-
bles in the test and train data, respectively, and 47,517 and 80,644
cells, respectively.

Table 3 shows the top 10 phrases with no retrieved cell in the
TTRE subtask train data. It is found that there are many cases in

Table 2: Number of datasets in TTRE subtask

document table cell

test 25 1,125 47,517
train 42 1,726 80,644

total 67 2,851 128,161

Table 3: Phrases for which there is no retrieved cell

phrase frequency phrase frequency

(1) 50 ※ 1 18
2 34 (注) 18
(2) 34 1 18
3 25 (3) 18
4 18 ※ 2 15
"(注)" in the table represents a phrase for remarks in Japanese.

which no search cell corresponds to Name and Value when only
numeric or symbolic phrases are entered. The number of phrases
in the train data of the TTRE subtask was 3,402.

3 METHODS
TUTA [9] achieves state-of-the-art results on five datasets by

using a tree-based structure called a bi-dimensional coordinate tree
to represent the hierarchical information contained in the table,
and by using embedding in conjunction with row and column in-
dexes. TUTA assumes that when there is a hierarchical structure
in a table, the size of the merged cells decreases gradually from the
top (or leftmost) to the bottom (or rightmost) of the table. However,
with this method, as shown in Figure 2, coordinates can only be as-
signed to cells in accordancewith this assumption, and coordinates
cannot be assigned to large joint cells that appear in the middle of
the table. Therefore, this paper proposes a method to construct a
bi-dimensional coordinate tree in descending order of the size of
the joint cells in the table, obtained by exhaustively checking the
sizes of the merged cells in a table.

In the following, the bi-dimensional coordinate tree determined
by TUTA is called the “default tree”, of which the vertical (column)
and horizontal (row) trees are called the “default vertical tree” and
“default horizontal tree”, respectively, and the bi-dimensional co-
ordinate tree determined by the proposed method is called the “ex-
haustive tree”, of which the vertical (column) and horizontal (row)
trees are called “exhaustive vertical tree” and “exhaustive horizon-
tal tree”, respectively.

3.1 exhaustive tree
The proposed method is explained using Figure 3. First, for the

exhaustive vertical tree, the parent node is set to the column con-
taining the cell with the largest col span. However, if the cells have
the same size, the cell at the top is adapted. In the example table,
the two cells marked (0) and (1) correspond. Next, for each cell
corresponding to the parent node, the column containing the cell
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with the next largest column span is made a child node of the par-
ent node. However, if the cells have the same size, the cell at the
top is adapted. In the example table, the parent node (0) has a col
span of 4, and the cell with the next largest col span among the
four columns on the left side of the table is the cell labeled (0, 0),
so the cell in that column that encompasses the column span is
made a child node of the parent node. The cell with the range of
columns is made a child node of the parent node. Here, the two
cells marked (0, 0) and (0, 1) are applicable. The same procedure is
repeated recursively, ending when the size of the column span (col
span) reaches 1. Similarly, for the exhaustive horizontal tree, the
tree structure is constructed based on the size of the row span.

3.2 Data conversion
The securities reports in HTML format were converted to a for-

mat suitable for input into the TUTA model.

3.2.1 Table extraction.
The ranges enclosed by <table> tags were extracted from the

HTML document. However, tables without a single cell-id assigned
by the annotator were excluded.

3.2.2 Table normalization.
HTML tables were normalized using the NFKC (Normalization

Form Compatibility Composition) method. All △ symbols were
replaced with - symbols.

3.2.3 Convert to json format.
The table inHTML formatwas converted to json format suitable

for input into the TUTAmodel. The cell features used are shown in
Table 4. Examples of cells in HTML format are shown in Figure 6. V
represents the cell value, "812.6" in the example. DT represents the
data type of the cell value: 0 for text, 1 for numeric, and 5 for blank.
Numeric values are determined based on whether the majority of
the cell values are numeric. HF indicates whether the cell value
contains a mathematical expression, and is set to 0. LB, TB, BB, and
RB were set to 1 if there were ruled lines on the left, top, bottom,
and right parts, respectively, and 0 otherwise. BC is the background
color, and FC is the font color. FB indicates whether the font is
bold or not, and is set to 1 if the font is bold and 0 otherwise. The
coordinates of each cell, the coordinates of the joined cells, and the
tree structure of the table were also used as features of the table.

Table 4: Feature set of the cell used

Feature name Description e.g.

V cell value 812.6
DT data type 1
HF if has formula 0
LB if has left border 1
TB if has top border 1
BB if has bottom border 1
RB if has right border 1
BC background color #ffffff
FC font color #000000
FB if has font bold 0

Figure 6: Example of cell in HTML format

3.2.4 Translate into English.
The Google Translate API was used to translate the cell values.

In some cases, the Japanese currency unit "yen" was mistranslated
as "circle," so all "circle" was replaced with "yen".

3.3 TDE
The pre-trained TUTA-implicit model was fine-tuned to be clas-

sified into four classes:Metadata, Header, Attribute, andData. There
are three types of TUTAmodels: TUTA-basemodel, TUTA-implicit
model, and TUTA-explicit model. The TUTA-implicit model is a
model that uses position embedding during training. The TUTA-
implicit model was used in this study because previous studies
have shown that the TUTA-implicit model has the best perfor-
mance. The architecture of the model was used without modifi-
cation. The batch size was set to 2 or 4, and the learning rate was
set to 8e-6, up to 200 epochs.

3.4 TTRE
We propose a cell retrieval method considering the cell class.

Figure 7 shows an overview of the proposed method in the TTRE
subtask. First, the text of a given phrase and the text of each cell
of a table in the same document are input to Text Encoder to ob-
tain their respective embedded representations. Then, the similar-
ity between the phrase and the cell text is calculated, and the Name
is determined. Next, the features of the table are input into the
model for Cell Type Classifier to obtain the class of each cell in the
table. Finally, the Value is determined based on the information in
Name and the class of each cell in the table.

3.4.1 Name.
First, an embedded representation of a given phrase and the text

of each cell of a table in the same document was obtained by the
multilingual-e5 [8] model. Then, we calculated the cosine similar-
ity between the phrase and the embedded representation of the
cell text. Next, the phrases were ranked in order of similarity, and
the top K phrases that exceeded the threshold were designated as
names. The threshold values for the similarity and the number of
cases to be retrieved were set to the values that would result in
the highest performance of Name according to the training data.
Phrases consisting only of numbers or symbols were excluded.
Japanese phrases meaning "note" that occur frequently were also
excluded.
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Figure 7: Overview of the processing of the proposed method in the TTRE subtask

3.4.2 Value.
Table features were input into the TUTA model, and each cell

was classified into one of four classes: Metadata, Header, Attribute,
and Data. Next, cells that belonged to the same row or column as
the cell whose name was presumed to be Name were extracted,
and cells that were classified into the Data class were designated
as Value.

4 EXPERIMENTS
In this section, we examine the effectiveness of the exhaustive

tree method for understanding table structure through the TDE
and TTRE subtasks.

4.1 METHODS TO BE EVALUATED

4.1.1 TDE.
We compare the usefulness of three methods: the conventional

default tree method, the proposed exhaustive tree method, and a
method that does not consider the tree structure of the table (here-
after referred to as "no tree").

4.1.2 TTRE.
We compare four methods: a conventional method with a de-

fault tree, a proposed method with an exhaustive tree, a method
that does not consider the tree structure of the table (hereinafter
called "no tree"), and a method that does not consider the class of
cells. A method that does not consider the class of cells is one that
assumes that all cells belonging to the same row or column as the
cell estimated to be Name are Value. We also examine the effect

of different Text Encoders. The Text Encoder is a multilingual-e5
model, a sentence-luke model [10], a sentence-bert model [6], a
deberta-v2 model [2], mdeberta-v3 model [1].

One general-purpose text embedding model with state-of-the-
art performance is E5 (EmbEddings from bidirEctional Encoder
rEpresentations). E5 is pre-trained byweakly supervised contrastive
learning on a large unlabeled dataset, CCPairs. Fine tuning of this
pre-trained model on a small labeled dataset yields even higher
quality text embeddings. Using the pre-trained parameters of xlm-
roberta-base as initial values, multilingual-e5 uses a wide variety
ofmultilingual datasets (FilteredmC4, CCNews, NLLB,Wikipedia,
Filtered Reddit, S2ORC, Stackexchange, xP3, andMiscellaneous un-
supervised SBERT data). For the models pre-trained on this multi-
lingual dataset, we used labeled datasets (MS MARCO, NQ, Trivia
QA, NLI from SimCSE, ELI5, DuReader Retrieval, KILT Fever, KILT
HotpotQA, SQuAD, Quora Mr. TyDi, MIRACL) for fine tuning.

In addition to the pre-training task in BERT, LUKE is a new
model that learns contextualized representations of words and en-
tities, reaching state-of-the-art performance on a variety of entity-
related tasks. The model treats words and entities in a given text as
independent tokens and outputs their contextualized representa-
tions. In order to focus on entities here, we extend the self-attention
mechanism to enable the calculation of word- and entity-aware
scores.

SBERT is a model with a Siamese network structure that adds
a pooling layer to the output of each of the two BERTs to obtain
better sentence embedding than conventional BERT. This SBERT
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Table 5: Scores of TDE subtask in formal run and late submission

ID Method Batch size Epoch F-measure

81 TUTA no tree 2 44 0.9537
139 TUTA default tree 2 44 0.9460
140 TUTA default tree 2 130 0.9487
141 TUTA default tree 4 64 0.9459
142 TUTA default tree 4 130 0.9422
148 TUTA exhaustive tree 2 54 0.9438
149 TUTA exhaustive tree 2 116 0.9480
150 TUTA exhaustive tree 4 82 0.9455
151 TUTA exhaustive tree 4 127 0.9503

Table 6: Scores of TTRE subtask in formal run and late submission

ID Method Name Value Total

120 multilingual-e5-small 0.3198 0.1154 0.2176
125 multilingual-e5-small + TUTA no tree 0.3198 0.2688 0.2943
144 multilingual-e5-small + TUTA default tree 0.3198 0.2669 0.2934
158 multilingual-e5-small + TUTA exhaustive tree 0.3198 0.2625 0.2912
122 multilingual-e5-base 0.3221 0.1186 0.2204
127 multilingual-e5-base + TUTA no tree 0.3221 0.2719 0.2970
146 multilingual-e5-base + TUTA default tree 0.3221 0.2704 0.2962
156 multilingual-e5-base + TUTA exhaustive tree 0.3221 0.2659 0.2940
123 multilingual-e5-large 0.3212 0.1153 0.2182
128 multilingual-e5-large + TUTA no tree 0.3212 0.2679 0.2945
147 multilingual-e5-large + TUTA default tree 0.3212 0.2662 0.2937
154 multilingual-e5-large + TUTA exhaustive tree 0.3212 0.2629 0.2920
116 sentence-luke-japanese-base-lite 0.3000 0.1120 0.2060
136 sentence-luke-japanese-base-lite + TUTA no tree 0.3000 0.2563 0.2781
152 sentence-luke-japanese-base-lite + TUTA default tree 0.3000 0.2545 0.2773
153 sentence-luke-japanese-base-lite + TUTA exhaustive tree 0.3000 0.2537 0.2768
118 sentence-bert-base-ja-mean-tokens-v2 0.2805 0.1067 0.1936
138 sentence-bert-base-ja-mean-tokens-v2 + TUTA no tree 0.2805 0.2435 0.2620
112 deberta-v2-tiny-japanese 0.2753 0.1029 0.1891
132 deberta-v2-tiny-japanese + TUTA no tree 0.2753 0.2419 0.2586
113 deberta-v2-base-japanese 0.2810 0.1051 0.1931
133 deberta-v2-base-japanese + TUTA no tree 0.2810 0.2453 0.2632
114 deberta-v2-large-japanese 0.2739 0.1015 0.1877
134 deberta-v2-large-japanese + TUTA no tree 0.2739 0.2367 0.2553
110 mdeberta-v3-base 0.1983 0.0700 0.1342

not only acquires sentence embeddings better than conventional
BERT, but also significantly reduces inference time.

DeBERTa is a modified version of BERT and RoBERTa that uses
a disentangling attention mechanism to represent each word and
its relative position as two independent vectors. During pre-training,
the decoder is extended to mask absolute word positions. In addi-
tion, virtual adversarial learning is used during fine tuning. De-
BERTa V2 augments the tokenizer’s vocabulary, adds a convolu-
tional layer to learn the local dependence of input tokens, shares
the position and content projectionmatrices in the attentionmech-
anism, and uses buckets to encode relative positions. DeBERTa V3

is an improved version of DeBERTa that uses Gradient Disentan-
gled Embedding Sharing. mDeBERTa is a model trained on De-
BERTa using CC100, a multilingual dataset.

The sentence-luke, sentence-bert, and deberta-v2 models used
Japanese models, while the multilingual-e5 and mdeberta-v3 mod-
els used multilingual models. For the deberta-v2 model, Juman++
2.0.0-rc3 [5, 7] was used during tokenization. The thresholds for
the similarity and the number of cases to be retrieved were set to
the values for which the performance of Name was highest de-
pending on the training data.
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Table 7: Detailed scores of TTRE subtask

Method Name Value Total

Precision Recall F1 Precision Recall F1 F1

multilingual-e5-base 0.3556 0.4574 0.3221 0.0857 0.5069 0.1186 0.2204
multilingual-e5-base + TUTA no tree 0.3556 0.4574 0.3221 0.2682 0.5062 0.2719 0.2970
multilingual-e5-base + TUTA default tree 0.3556 0.4574 0.3221 0.2658 0.5062 0.2704 0.2962
multilingual-e5-base + TUTA exhaustive tree 0.3556 0.4574 0.3221 0.2646 0.5065 0.2659 0.2940
sentence-luke-japanese-base-lite 0.3401 0.4213 0.3000 0.0827 0.4643 0.1120 0.2060
sentence-luke-japanese-base-lite + TUTA no tree 0.3401 0.4213 0.3000 0.2600 0.4639 0.2563 0.2781
sentence-luke-japanese-base-lite + TUTA default tree 0.3401 0.4213 0.3000 0.2571 0.4639 0.2545 0.2773
sentence-luke-japanese-base-lite + TUTA exhaustive tree 0.3401 0.4213 0.3000 0.2594 0.4641 0.2537 0.2768

4.2 RESULTS AND DISCUSSION

4.2.1 TDE.
Table 5 shows the experimental results of the TDE subtask. Com-

pared to the proposed method (ID:148-151), the method that does
not consider the tree structure of the table (ID:81) shows higher
performance. The performance of the proposed method (ID:148-
151) and the method with default tree (ID:139-142) did not differ
significantly. There are three possible reasons for the low perfor-
mance of the methods considering the tree structure of the table.

(1) The tree structure proposed by TUTA was built with infor-
mation on joined cells, indentation, and formulas, but in this
experiment, the tree structure was built only with informa-
tion on joined cells.

(2) The cell unit assumed by TUTA was different from that of
the TDE subtasks.

(3) The fact that there were few complex tables in the TDE sub-
task data set that required a tree structure.

As a specific example of the third case, in the case of a table like
Figure 1, the TDE subtask mainly defined a single cell as an area
surrounded by a ruled line, but TUTA defined a single cell as a text
unit, which we considered to represent a more complex hierarchy.

4.2.2 TTRE.
Table 6 shows the experimental results of the TTRE subtask.

Compared to the proposed method (ID:154, 156, 158), the method
without considering the tree structure of the table (ID:127) shows
higher performance onValue and Total. In all the results, themethod
without considering the tree structure of the table, the method
with the default tree, the proposed method, and the method with-
out considering the cell classes performed better in Value and To-
tal, in that order. As for the effect of different Text Encoders, the
method with multilingual-e5-base (ID:122, 127, 146, 156) showed
the highest performance in Name, Value, and Total.

Table 7 shows the detailed experimental results of the method
using multilingual-e5-base and the method using sentence-luke-
japanese-base-lite. For all methods, recall was higher than preci-
sion. multilingual-e5-base was the best performing multilingual
model, and sentence-luke-japanese-base-lite was the best perform-
ing Japanese model. Comparing Value between the method using
TUTA and the method without TUTA, there was no significant
difference in recall and a significant difference in precision. This

indicates that it is very effective to determine the cell type and ex-
clude cells other than those of the data class when determining
Value. In all methods, recall was higher than precision. This may
be due to the fact that Name is determined only by the similarity
between a given phrase and cell values, resulting in the acquisi-
tion of tables that are different from those that should actually be
referenced.

Table 8: Degree of agreement between multilingual model
and Japanese model prediction results

degree of agreement frequency (percentage)

both match correctly 441 (0.235)
both match incorrectly 677 (0.361)

Table 8 shows the degree of agreement between the prediction
results usingmultilingual-e5-base and sentence-luke-japanese-base-
lite methods for Name. In Name, there were 1,118 cases in which
the predictions for each phrasematched perfectly for the twometh-
ods, accounting for 59.63% of the total number of cases. The num-
ber of cases correctly identified by both methods was 441, account-
ing for 23.52% of the total. The number of cases where both meth-
ods made exactly the same error was 677, accounting for 36.11% of
the total.

5 ADDITIONAL EXPERIMENTS
In this section, we examine the effectiveness of exhaustive tree

methods for understanding table structure using the deexcelera-
tor (DeEx)[4] dataset. DeEx is a dataset for cell type classifica-
tion. There are 6 classes of classification: metadata, notes, data, at-
tributes, header, and derived, and their distributions are shown in
Table 10. The DeEx dataset is characterized by the fact that most of
the cells are classified into the data class. On the other hand, only
a few cells are classified into the notes class.

5.1 METHODS TO BE EVALUATED
We verify the usefulness of the proposed method by comparing

four methods: the conventional default tree method, the proposed
exhaustive tree method, the no tree method that does not consider
the tree structure of the table, and the raw tree method provided by
the authors of TUTA. The pre-trained TUTA-implicit model was
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Table 9: Scores of experiments with DeEx dataset

Method metadata notes data attributes header derived macro-F1

TUTA no tree 0.8574 0.4825 0.9937 0.8114 0.8701 0.8092 0.8041
TUTA default tree 0.8585 0.4419 0.9930 0.8382 0.8547 0.7391 0.7876
TUTA exhaustive tree 0.8671 0.5589 0.9931 0.8045 0.8638 0.7491 0.8061
TUTA raw tree 0.8516 0.4271 0.9911 0.7888 0.8070 0.7767 0.7737

Table 10: Distribution by cell type

cell type quantity percentage

metadata 20,020 1.54%
notes 5,314 0.41%
data 1,232,762 94.58%
attributes 7,024 0.54%
header 21,810 1.67%
derived 16,538 1.27%

fine-tuned to be classified into 6 classes: metadata, notes, data, at-
tributes, header, and derived. The architecture of the model was
used without modification. The dataset was the DeEx dataset ran-
domly divided into five parts. Cross-validation was used to calcu-
late the average macro-F1. The batch size was set to 2 or 4, and the
learning rate was set to 8e-6, up to 200 epochs.

5.2 RESULTS AND DISCUSSION
Table 9 shows the experimental results on the DeEx dataset.

Of all the methods, TUTA exhaustive tree gave the best performance
in macro-F1. TUTA exhaustive tree also showed 3.24% higher perfor-
mance than TUTA raw tree in macro-F1. However, there was not a
significant difference betweenTUTA no tree andTUTA exhaustive tree.
For all methods, the F-measure for the data class was the highest
and the F-measure for the notes class was the lowest. The number
of data classes is the largest and the number of notes classes is the
smallest, suggesting that the distribution of cell types has a signif-
icant impact. TUTA exhaustive tree has the best performance in the
notes class, indicating that the proposed method may have a high
ability to learn effectively from a small number of data.

6 CONCLUSIONS
This paper describes the methods and results of Team KSU for

the UFO task at NTCIR-17. In the TDE subtask, we designed meth-
ods for cell type classification using exhaustive tree structures based
on the spanning sizes of the merged cells in the table. In the TTRE
subtask, we designed methods for cell retrieval based on the cell
class. Scores on the F-measure in the formal run were 95.37% for
ID81 in TDE and 9.18%, 4.08%, and 6.63% for ID99 on the Name,
Value, and Total, respectively, in TTRE. Scores on the F-measure
including the formal run and late submission run were 95.37% for
ID81 in TDE and 32.21%, 27.19%, and 29.70% for ID127 on theName,
Value, and Total, respectively, in TTRE. The experimental results
show that the method without considering the tree structure of the

table (ID:81) performs better than the proposed method (ID:148-
151) in the TDE subtask. In the TTRE subtask, the method with-
out considering the tree structure of the table (ID:127) performed
better on Value and Total than the proposed method (ID:154, 156,
158). There are three expected reasons for the low performance of
the methods considering the tree structure of the table: "The tree
structure proposed by TUTA was built with information on joined
cells, indentation, and formulas, but in this experiment, the tree
structure was built only with information on joined cells.", "The
cell unit assumed by TUTA was different from that of the TDE
subtasks.", and "The fact that there were few complex tables in the
TDE subtask data set that required a tree structure.". Additional
experiments on the DeEx dataset show that the proposed method
performs best on macro-F1. In addition, the proposed method out-
performs the previous study by 3.24% on macro-F1.
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