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ABSTRACT 

The TMUNLP team participated in the adverse drug event (ADE) 
detection subtask, focusing on social media texts in English for 
NTCIR-17's MedNLP-SC. This paper outlines our approach to 
addressing the challenge. Within the ADE subtask, we primarily 
implemented two methods to tackle the long tail distribution is-
sue: distribution balanced loss and data augmentation. Finally, we 
employed ensemble learning to enhance the performance of our 
model. 
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1  INTRODUCTION 

NTCIR-17 MedNLP-SC [20] is a shared task workshop focused 

on medical natural language processing, utilizing radiology re-

ports and adverse drug event detection in social media. The ob-

jective of this task is to foster the development of practical sys-

tems that support various medical services. This year, within the 

MedNLP-SC track, we primarily participated in the social media 

(SM) Subtask: Adverse Drug Event Detection (ADE) (Lan-

guages: English). 

For the detection of adverse drug events, the objective of this 

task is to extract ADE information from social media, classifying 

the information into those that contain ADE (22 symptoms) and 

those that do not. Furthermore, all information that includes ADE 

is subject to multi-label tagging for symptoms. We view this task 

as a multi-label classification challenge, where the goal is to iden-

tify both the drug names and the associated symptoms in tweets 

that reference an ADE. Through data mining, we observed that 

the distribution of symptoms exhibits a long-tail distribution. 

Regarding the long-tail distribution issue in multi-label clas-

sification, we explored two methods to address the problem: the 

utilization of a distribution balance loss and data augmentation 

specifically for the minority classes. 

2  RELATED WORK 

2.1 Multi-Label Text Classification 

Multi-label classification (MLTC) is a task applied to various data 

mining applications, such as tagging videos, images, music, and 

text. Unlike traditional binary or multi-class single-label classifi-

cation, multi-label classification requires assigning a document to 

multiple categories based on its content. In MLTC, it integrates 

both multi-class and binary classification, as it does not impose 

any restrictions on the number of output labels [6, 21]. The issue 

of class imbalance is widespread across different classification 

tasks. In multi-label classification, when there is a significant im-

balance between high and low instances for each label, the chal-

lenge becomes even more pronounced due to the vast number of 

labels and their sparse distribution [21]. 

Early research in machine learning MLTC algorithms 

mainly falls into two categories: problem transformation and al-

gorithm adaptation. The former transforms the multi-label classi-

fication problem into a series of single-label classification prob-

lems, while the latter modifies existing single-label algorithms to 

cater to multi-label data. Since machine learning relies heavily on 

feature engineering and can be easily influenced by noise, the pre-

dictive performance still has room for improvement [11]. In re-

cent years, with the rapid development of deep learning, MLTC 

algorithms based on deep neural networks have gained wide-

spread attention. The emergence of technologies such as Convo-

lutional Neural Networks (CNN), Recurrent Neural Networks 
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(RNN), and Transformers has significantly improved the perfor-

mance and generalization capability of multi-label classification 

[2, 8, 14, 22]. 

 

2.2 Classification with Imbalanced Data 

In classification tasks involving imbalanced data having charac-

teristics of a long-tail distribution, the majority classes tend to 

dominate the model training process. In other words, when there 

is an imbalance of data between majority and minority classes, 

the model is inclined to favor the majority class. To address the 

class imbalance issue in multi-label classification, common tech-

niques include Binary Relevance, Re-sampling, and Re-

weighting. 

Binary Relevance [24] is a straightforward approach that 

breaks down the original multi-label classification problem into 

multiple independent binary classification tasks (one per class la-

bel). This involves adopting popular binary imbalance learning 

techniques to directly address the skew between majority and mi-

nority classes. 

Re-sampling [7] is a traditional solution for long-tail learn-

ing. It encompasses oversampling techniques for tail labels in 

training data, such as random sampling [3], nearest neighbor in-

formed oversampling [19], and synthetic instance generation [4, 

5, 16], aimed at augmenting the training data for minority classes. 

Another approach involves under sampling the head labels, but 

this method can lead to significant data loss, especially when 

there is limited training data. 

Re-weighting technique involves adjusting the loss function 

of the training model [9, 13, 15, 23], allocating a higher loss to 

samples of tail labels in order to enhance model performance. 

3  METHODS 

In the following section, we present methods used in ADE. 

 

3.1 Pretrained Language Models 

In this task, we experimented with several different pre-trained 

language models. Ultimately, we opted for BERT-base-uncased 

[10] and ClinicalDistilBERT [18]. BERT-base-uncased is a trans-

formers model pre-trained on English data from Wikipedia and 

Book Corpus in a self-supervised manner. ClinicalDistilBERT 

was developed by training the BioDistilBERT-cased model in a 

continual learning fashion for 3 epochs using a total batch size of 

192 on the MIMIC-III notes dataset. 

 

3.2 Distribution Balance Loss 

Traditionally in Natural Language Processing (NLP), Binary 

Cross Entropy (BCE) loss is commonly adopted for multi-label 

text categorization [1]. Building on this foundation, variations 

like the Focal loss emerged. Specifically, Focal loss, deeply an-

chored in BCE, prioritizes challenging-to-classify samples [15]. 

On a related note, the Class-balanced Focal Loss enhances the 

Focal loss by incorporating the notion of class balance, ensuring 

the model is more sensitive to less represented classes [9]. More-

over, the Distribution Balanced Loss, through the amalgamation 

of rebalanced weighting and Negative Tolerant Regularization 

(NTR), primarily diminishes redundant information inherent in 

label co-occurrence, essential in multi-label contexts. Following 

this, it downweighs the 'easy-to-classify' negative instances 

[13,23]. Following is the distribution-balanced loss we used for 

this task. 

𝐿𝐷𝐵(𝑥
𝑘 , 𝑦𝑘) =

1

𝐶
∑𝑟̂𝑖

𝑘[𝑦𝑖
𝑘log⁡ (1+ 𝑒𝑧𝑖

𝑘−𝜈𝑖)

𝑐

𝑖=0

+
1

𝜆
(1 − 𝑦𝑖

𝑘)𝑙𝑜𝑔⁡(1

+ 𝑒−𝜆(𝑧𝑖
𝑘−𝜈𝑖))] 

(1) 

 

3.3 Data Augmentation 

Data augmentation has demonstrated its effectiveness in numer-

ous artificial intelligence areas. We employed "nlpaug", a toolkit 

Table 1. Distribution of symptoms in training set 

 

ID CUI Symptoms ADE non-ADE 

01 C0027497 nausea 806 7158 
02 C0011991 diarrhea 547 7417 
03 C0015672 fatigue 268 7696 
04 C0042963 vomiting 193 7771 

05 C0003123 loss of appetite 249 7715 
06 C0000737 abdominal pain 354 7610 
07 C0018681 headache  267 7697 
08 C0015967 fever 153 7811 
09 C0206062 interstitial lung disease 16 7948 
10 C0023895 liver damage 28 7936 
11 C0012833 dizziness 124 7840 
12 C0030193 pain 237 7727 

13 C0002170 alopecia 71 7893 
14 C0004096 analgesic asthma syndrome 95 7869 
15 C0022658 renal impairment 34 7930 
16 C0020517 hypersensitivity 184 7780 
17 C0917801 insomnia 99 7865 
18 C0009806 constipation 71 7893 
19 C0005956 bone marrow dysfunction 8 7956 
20 C0010692 hemorrhagic cystitis 11 7953 
21 C0015230 rash 116 7848 

22 C0149745 stomatitis  57 7907 

 

Table 2. Subtask 1-SM-ADE-EN training set 10-fold cross-validation 

binary scores on different models. 

 

Model Class P  R F Macro F1-score 

BERT-base-uncased 
non-ADE 0.95  0.91  0.93  

0.89  
ADE 0.82  0.89  0.85  

BERT-base-uncased + DBL 
non-ADE 0.95  0.91  0.93  

0.89  
ADE 0.82  0.89  0.85  

BERT-base-uncased + DA 
non-ADE 0.94  0.92  0.93  

0.89  
ADE 0.83  0.86  0.85  

ClinicalDistilBERT + DBL 
non-ADE 0.95  0.92  0.93  

0.90 
ADE 0.83  0.89  0.86  

Abbreviations: P, Precision; R, Recall; F, F1-score. 
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designed for data augmentation [12], to select synonyms based on 

WordNet [17, 25]. For tweets in the minority categories, we uti-

lized the Synonym Augmenter to replace words or phrases within 

the tweets with their corresponding synonyms. 

 

3.4 Model Ensembles 

During the model parameter tuning phase, given that we only had 

a training set, we employed k-fold cross-validation to thoroughly 

assess the model's performance and fine-tune its parameters. We 

selected several promising parameter combinations and trained 

the models using the entire training set. From these, we picked a 

few models with the highest performance for ensemble modeling. 

Since we employed two distinct methods for model training, we 

decided to use the hard voting approach for the model, as it was 

the simplest to implement. 

4  EXPERIMENTS 

Our experiments utilized 10-fold cross-validation and examined 

various transformer models, focusing particularly on their perfor-

mance in predicting 22 different symptoms, as outlined in Table 

1. The results, tabulated from Tables 2 through 6, provide a com-

prehensive understanding of model effectiveness across multiple 

metrics. Table 2 shows that all BERT-based models achieved a 

Macro F1-score of 0.89, suggesting that the application of Distri-

bution Balance Loss (DBL) and Data Augmentation (DA) tech-

niques are effective. ClinicalDistilBERT with DBL outperformed 

slightly with a Macro F1-score of 0.9. 

Table 3 dives deeper, highlighting the shortcomings of the 

baseline BERT model in predicting underrepresented symptoms 

like headache, fever, interstitial lung disease, dizziness, constipa-

tion, and hemorrhagic cystitis, which had poor F1-scores ranging 

from 0.00 to 0.65. The introduction of DBL and DA significantly 

improved these scores. For instance, headache saw an increase in 

F1-score from 0.65 to 0.67 and 0.69 with DBL and DA, respec-

tively. Similarly, fever improved from an F1-score of 0.46 to 0.67 

Table 3. Subtask 1-SM-ADE-EN training set 10-fold cross-validation individual per class scores on different models. 
 
CUI / Model BERT BERT + DBL BERT + DA ClinicalDistilBERT + DBL 

  P R F P R F P R F P R F 

C0027497 0.86 0.93 0.89 0.86 0.86 0.86 0.87 0.90 0.88 0.87 0.93 0.90 

C0011991 0.80 0.86 0.83 0.81 0.82 0.81 0.81 0.81 0.81 0.81 0.84 0.82 

C0015672 0.84 0.91 0.88 0.86 0.91 0.88 0.86 0.93 0.89 0.84 0.93 0.88 

C0042963 0.80 0.90 0.85 0.84 0.91 0.87 0.82 0.91 0.86 0.80 0.90 0.85 

C0003123 0.80 0.85 0.82 0.81 0.84 0.82 0.84 0.84 0.84 0.80 0.88 0.84 

C0000737 0.84 0.90 0.87 0.86 0.88 0.87 0.83 0.90 0.86 0.86 0.90 0.88 

C0018681 0.67 0.64 0.65 0.65 0.69 0.67 0.70 0.69 0.69 0.63 0.75 0.88 

C0015967 0.60 0.38 0.46 0.65 0.69 0.67 0.60 0.56 0.58 0.59 0.81 0.68 

C0206062 0.69 0.39 0.50 0.56 0.64 0.60 0.61 0.50 0.55 0.55 0.61 0.68 

C0023895 0.81 0.85 0.83 0.83 0.87 0.85 0.86 0.90 0.88 0.82 0.89 0.58 

C0012833 0.61 0.57 0.59 0.60 0.52 0.56 0.56 0.51 0.50 0.59 0.54 0.85 

C0030193 0.92 0.92 0.92 0.84 0.83 0.84 0.87 0.96 0.91 0.88 0.94 0.56 

C0002170 0.93 0.96 0.94 0.92 0.95 0.93 0.92 0.98 0.95 0.92 0.98 0.91 

C0004096 0.69 0.59 0.63 0.67 0.76 0.71 0.75 0.71 0.73 0.67 0.82 0.95 

C0022658 0.80 0.86 0.83 0.83 0.83 0.83 0.83 0.86 0.85 0.82 0.86 0.74 

C0020517 0.71 0.68 0.69 0.66 0.73 0.69 0.64 0.75 0.69 0.69 0.73 0.84 

C0917801 0.79 0.79 0.79 0.77 0.93 0.84 0.76 0.77 0.77 0.77 0.82 0.71 

C0009806 0.00 0.00 0.00 1.00 0.25 0.40 0.75 0.38 0.50 0.67 0.50 0.79 

C0005956 0.77 0.86 0.81 0.73 0.82 0.77 0.78 0.82 0.80 0.76 0.81 0.57 

C0010692 0.75 0.27 0.40 0.80 0.73 0.76 0.90 0.82 0.86 0.85 1.00 0.79 

C0015230 0.78 0.87 0.82 0.77 0.91 0.83 0.76 0.84 0.80 0.79 0.91 0.92 

C0149745 0.76 0.79 0.78 0.75 0.82 0.78 0.75 0.79 0.77 0.77 0.89 0.84 

Micro F1-score 0.80 0.84 0.82 0.80 0.83 0.81 0.81 0.83 0.82 0.80 0.86 0.83 

Macro F1-score 0.74 0.72 0.72 0.77 0.78 0.77 0.78 0.78 0.77 0.76 0.83 0.79 

Abbreviations: P, Precision; R, Recall; F, F1-score. 

Table 4. Subtask 1-SM-ADE-EN training set 10-fold cross-val-

idation full per label scores on different models. 

 

Model Class P  R F1 Macro F1 

BERT-base-uncased 
0 1.00  1.00  1.00  

0.91  
1 0.80  0.84  0.82  

BERT-base-uncased  
+ DBL 

0 1.00  1.00  1.00  
0.90  

1 0.80  0.83  0.81  

BERT-base-uncased  
+ DA 

0 1.00  1.00  1.00  
0.91  

1 0.81  0.83  0.82  

ClinicalDistilBERT  
+ DBL 

0 1.00  1.00  1.00  
0.91  

1 0.80  0.86  0.83  

 

Table 5. Subtask 1-SM-ADE-EN training set 10-fold cross-

validation exact accuracy on different models. 

Model Exact accuracy 

BERT-base-uncased 0.8542 

BERT-base-uncased + DBL 0.8439 

BERT-base-uncased + DA 0.8547 

ClinicalDistilBERT + DBL 0.8566 
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with DBL and 0.58 with DA. Remarkably, even extremely rare 

symptoms like interstitial lung disease, which had only 16 ADE 

cases in the training set, improved its F1-score to 0.60 and 0.55 

with DBL and DA, respectively. These improvements were not 

isolated but contributed to a general boost in the model's Macro 

F1-score, elevating it from 0.72 in the baseline to 0.77 with DBL 

and DA, and further to 0.79 with ClinicalDistilBERT and DBL. 

Based on Full Per Label Scores, Table 4 shows consistent high 

performance across all models. ClinicalDistilBERT with DBL 

stood out slightly, achieving an F1-score of 0.83 for Class 1 and 

matching the highest F1-score of 0.91. In Table 5, Exact Accu-

racy is evaluated, and while DBL decreased BERT's performance 

(0.8439), DA increased it (0.8547). ClinicalDistilBERT with 

DBL showed the highest Exact Accuracy of 0.8566. In addition, 

Table 6 illustrates hard-voting ensemble models, showing that 

adding more models significantly improves Micro F1-score per-

formance, while improving Macro F1-score performance slightly, 

indicating a more balanced performance. The results collectively 

affirm the efficacy of employing DBL and DA techniques, espe-

cially for improving the prediction of underrepresented symp-

toms, thereby enhancing the model's overall effectiveness in clas-

sification tasks. 

5  SUBMISSIONS for SM-ADE-EN 

We present the results of our submissions for the SM-ADE-EN 

test set, which is a multilingual dataset for adverse drug event 

(ADE) detection. We compare our submissions with three base-

line models: BERT, XLM-R, and XLM-RALL. BERT and XLM-

R are pre-trained language models that use English as the input 

language, while XLM-RALL is a multilingual model that uses 

four languages (Japanese, English, German, and French) as the 

input language [20]. Our submissions are based on ensemble tech-

niques that combine different variants of BERT and ClinicalD-

istilBERT, which are fine-tuned with distribution balance loss 

and data augmentation. 

Submission-1: This included the baseline BERT, four BERTs us-

ing distribution balance loss (with different parameters), and one 

BERT with data augmentation. 

Submission-2: This incorporated three BERTs using distribution 

balance loss (with different parameters), one BERT with data 

augmentation, and one ClinicalDistilBERT using distribution bal-

ance loss. 

Submission-3: This consisted of eight BERTs using distribution 

balance loss (with different parameters), one BERT with data 

augmentation, and one ClinicalDistilBERT using distribution bal-

ance loss. 

Table 7 details the performance of our models on the SM-

ADE-EN test set. The results are shown in the Table 7. We can 

observe that our submissions outperform the baseline models on 

all metrics, except for exact match accuracy, where XLM-RALL 

has a slightly higher score than our submissions. However, XLM-

RALL uses four languages for training, while our submissions use 

only English. Therefore, our submissions are more efficient and 

practical for monolingual applications. Moreover, we can also see 

that our submissions have higher per ADE label F1-scores than 

the baseline models, especially for the ADE class. This indicates 

that our submissions are more effective in detecting ADEs from 

Table 6. Individual Per Class Scores - Micro and Macro F1-scores 

on the Subtask 1-SM-ADE-EN training set using the ensemble 

model. 

Model Micro F1 Macro F1 

Hard Voting 5 model 0.8356  0.8026  

Hard Voting 6 model 0.8335  0.7997  

Hard Voting 10 model 0.8324  0.8042  

 

Table 7. Results of Submissions for SM-ADE-EN 
Systems Binary Score 

Class Precision Recall F1 

BERT ADE 0.75 0.67 0.71 

non-ADE 0.87 0.91 0.89 
XLM-R ADE 0.77 0.54 0.63 

non-ADE 0.83 0.94 0.88 
XLM- RALL ADE 0.75 0.82 0.78 

non-ADE 0.92 0.89 0.91 
Submission-1 ADE 0.73 0.86 0.79 

non-ADE 0.94 0.87 0.90 
Submission-2 ADE 0.71 0.86 0.78 

non-ADE 0.94 0.86 0.90 
Submission-3 ADE 0.72 0.86 0.79 

non-ADE 0.94 0.87 0.90 

Systems (Individual) Per Class Scores 

Micro F1 Macro F1 

BERT 0.66 0.41 

XLM-R 0.57 0.26 
XLM- RALL 0.76 0.61 
Submission-1 0.76 0.71 
Submission-2 0.76 0.70 
Submission-3 0.76 0.69 

Systems (Full) Per Label Scores 

Class Precision Recall F1 

BERT 0 0.99 1.00 0.99 
1 0.74 0.60 0.66 

XLM-R 0 0.99 1.00 0.99 
1 0.73 0.46 0.57 

XLM- RALL 0 1.00 0.99 0.99 
1 0.73 0.78 0.76 

Submission-1 0 1.00 0.99 0.99 
1 0.71 0.83 0.76 

Submission-2 0 1.00 0.99 0.99 
1 0.70 0.84 0.76 

Submission-3 0 1.00 0.99 0.99 
1 0.71 0.83 0.76 

Systems Exact Match Accuracy 

BERT 0.79 
XLM-R 0.76 

XLM- RALL 0.83 
Submission-1 0.8259 
Submission-2 0.8204 
Submission-3 0.8219 
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sentences, which is the main goal of this task. Moreover, our sub-

missions have higher binary F1-scores than the baseline models, 

which shows that our submissions can distinguish ADEs from 

non-ADEs with high accuracy. 

Notably, our models exhibited exceptional Micro and Macro 

F1-scores on per Class scores, surpassing the BERT and XLM-R 

baselines considerably but tying with XLM-RALL in Micro F1 av-

erage and exceeding in Macro F1 average. Submission-1 led with 

a macro average of 0.71, followed by Submission-2 at 0.70 and 

Submission-3 at 0.69. We attribute the success of our submissions 

to the ensemble technique, the distribution balance loss, and the 

data augmentation. The ensemble technique combines the predic-

tions of multiple models with different architectures and parame-

ters, which increases the diversity and robustness of the final out-

put. The distribution balance loss penalizes the models for pre-

dicting incorrect labels with high confidence, which reduces the 

overfitting and improves the generalization. The data augmenta-

tion generates synthetic sentences with ADEs by replacing drugs 

and adverse effects with synonyms or related terms, which en-

larges the training data and enhances the representation. 

In summary, we present our submissions for the SM-ADE-

EN test set, which achieve state-of-the-art results on various met-

rics. We demonstrate the effectiveness of our proposed method, 

which leverages ensemble techniques, distribution balance loss, 

and data augmentation. 

6  CONCLUSIONS 

This research addresses class imbalance in multi-label classifica-

tion for adverse drug event prediction. Utilizing Distribution Bal-

ance Loss (DBL) and Data Augmentation (DA), we showed a sig-

nificant rise in Macro F1-scores, particularly for minority labels. 

Among our submissions, Submission-1, which includes baseline 

BERT and several BERT models fine-tuned with varying DBL 

and DA parameters, led the pack with a Macro F1-score of 0.71. 

Interestingly, the performance appeared to decline slightly in 

Submission-2 and Submission-3, despite the incorporation of 

ClinicalDistilBERT and additional BERT models with varied 

DBL settings. This suggests that the absence of baseline BERT in 

these submissions might have contributed to their lower perfor-

mance, indicating that even a simple model can add value to an 

ensemble. 

While our techniques notably improved minority labels, they 

had a more modest impact on other metrics like Exact Accuracy, 

highlighting an area for future research. The observed trade-off 

between boosting minority labels at the expense of majority ones 

also deserves closer examination. Given the nuanced performance 

dynamics observed between the different submissions, further 

studies should aim to dissect the contribution of each model 

within the ensemble. This could lead to the development of a 

more balanced and performance-optimized predictive tool for 

multi-label classification tasks. 
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