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ABSTRACT
The VLP team participated in theMedNLP-SC subtask of the NTCIR-
17. This paper reports our approach to solving the problem and dis-
cusses our experimental and official results. We present approaches
which combine the training datasets using different methods, either
vertically or horizontally across the languages. We use different
text representation methods, either using a continuous embedding
vector generated by a large pretrained language model or a dis-
crete count vector generated by a simple bag-of-word method. Our
proposed approaches achieve good performance – our system is
ranked in the top two or three of the best performing systems for
the task.
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1 INTRODUCTION
Medical Natural Language Processing for Social media and Clin-
ical texts (MedNLP-SC) is one of the core tasks in NTCIR-17 for
medical natural language processing using clinical texts written
by physicians (radiology reports) or social media data. The goal
of this shared task is to promote the development of practical sys-
tems that support various medical services. The MedNLP-SC task
has two corpus-based subtasks: (1) Social Media Subtask which
focuses on Adverse Drug Event detection for social media texts in
Japanese, English, German, and French and (2) Radiology Report
Subtask which focuses on TNM staging for radiology reports in
Japanese [18]. The VLP team participated in the first subtask. This
paper reports our approach to solving the problem and discusses
the official results.

2 RELATEDWORK
The problem of the first subtask is essentially concerned with the
problem of multi-label text classification, which has been of interest
to researchers for many years. Multi-label text classification is
applied in many practical applications, such as customer reviews
of suppliers’ services and products on e-commerce platforms, or
movie reviews. Evaluations of health services, or health-related
questions, can also be multi-labeled.

Previously, muti-label classification (MLC) was often approached
based on existing approaches to the single-label classification prob-
lem [23]. Binary relevance algorithm was introduced by [1], in
which the labels are considered independent of each other, and
there will be a binary classifier built for each label. The classifier
chains method was presented in [15], this method can model the
correlation between labels. By mapping the label set to natural
numbers, Tsoumakas [17] transforms MLC to 𝑛 multi-class classi-
fiers. Some popular machine learning methods for classification
problems such as k-nearest neighbor, support vector machine, con-
ditional random field or decision tree are also modified to apply
to MLC [3, 8, 9, 22]. Approaches based on multi-class classifica-
tion often have difficulty when applied to multi-label classification
problems in cases where the number of labels is large and there are
relationships between labels. Because then the number of classifiers
will be large, or the label mapping set will be very large, leading to
data shortage as well as data imbalance.

There have been a number of effective approaches for multi-
label classification problems such as tree-base, embedding-base,
deep learning, etc. also proposed by researchers. CRAFTML was
proposed by [16], an algorithm based on decision tree combined
with a very fast partitioning approach. This system outperforms
other tree-based systems on nine large multi-label datasets. By
combining tree-base and deep learning, Ronghui [20] proposed
AttentionXML which is a label tree-based deep learning, which
included a multi-label attention mechanism for raw text input and
a shallow and wide probabilistic label tree to handle a large number
of labels. AttentionXML shows good results on eight benchmark
datasets, including datasets with a very large number of labels such
as Amazon-3M, with three million labels. A commonly used method
to represent textual contexts is pre-trained models. APLC-XLNet
was introduced by [19], which is a fine-tuned deep learning model
based on XLNet to learn the representation of an input text and
Adaptive Probabilistic Label Clusters for label clustering. The BERT
model is applied very effectively in many problems. In many recent
studies, the authors have used transformer-based models for MLC.
Zhang [21] proposed XR-Transformer, a novel recursive approach
to increase speed of fine-tuning transformer models while also
improving model performance.

Research related to biomedical data always attracts the atten-
tion of the community, and there have also been many studies
related to multi-label classification on biomedical data. Chen [2]
introduced LITMC-BERT, a method based on the transformer for
multi-label biomedical data. LITMC-BERT used BioBERT [12] to
create representations of the input text and a mechanism to share
transformer backbone between labels. Pan [14] proposed FAMLC-
BERT. ML-Net [7] is an end-to-end model for multi-label biomedical
text data.
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Related studies have shown that approaches based on transform-
ers with pre-trained models have very good results with multi-label
classification problems on biomedical text data. Our proposed meth-
ods in this research are an extension of this line of research.

3 METHODS
This section describes our approach to solving the problem. Given
a parallel input text in four languages, say 𝑥𝑒 , 𝑥 𝑓 , 𝑥𝑔, 𝑥 𝑗 for English,
French, German and Japanese respectively1, we experiment with
two data combination methods which results in two multilingual
training corpora as follows:

(1) In the first method, we combine vertically all the samples
in the four languages into a single corpus. Here, we use the
term “vertically” to signify the union or concatenation of
sample texts – for each language, there are about 9,957 texts;
there are thus 4 × 9, 957 samples in the vertically combined
corpus, each text is a monolingual sample.

(2) In the second method, we combine horizontally all the paral-
lel samples in the four languages into a single corpus. There
are also about 9,957 texts in this single corpus, each text has
four fields 𝑥 = [𝑥𝑒 , 𝑥 𝑓 , 𝑥𝑔, 𝑥 𝑗 ] and can be seen as a multilin-
gual sample.

We experiment with three different featurization methods:
(1) In the first method, we use a multilingual large pretrained

language model (LPLM) to produce an embedding vector
for each sample in the corpus. The chosen LPLM is XLM-
R [5] which has the best results on a development dataset.2
For a sample text 𝑥 in the vertical corpus, the LPLM pro-
duces an embedding vector ®𝑣 (𝑥) ∈ R𝑑 . For a sample text 𝑥
in the horizontal corpus, the LPLM produces four embed-
ding vectors [®𝑣 (𝑥𝑒 ), ®𝑣 (𝑥 𝑓 ), ®𝑣 (𝑥𝑔), ®𝑣 (𝑥 𝑗 )] and these vectors
are combined in two ways, they are either (1) averaged to
produce an embedding vector ®𝑣 (𝑥) = 1

4
∑ ®𝑣 (𝑥 ·) ∈ R𝑑 , or

(2) concatenated to produce an embedding vector ®𝑣 (𝑥) =

®𝑣 (𝑥𝑒 ) ⊕ ®𝑣 (𝑥 𝑓 ) ⊕ ®𝑣 (𝑥𝑔) ⊕ ®𝑣 (𝑥 𝑗 ) ∈ R4𝑑 . This method produces
a continuous vector representation for each input text.

(2) In the second method, we use a traditional bag-of-word fea-
turization technique to produce discrete count vectors for
each language and concatenate these vectors together. Stop-
words are first removed from each input text, then spaced-
based tokenization is performed. Each token array is then
vectorized by a count vectorizer. Three vectors correspond-
ing to three monolingual samples obtained by this same
preprocessing pipeline are then concatenated.3 This method
produces a discrete vector representation for each input text
in the horizontal fashion.

(3) In the third method, we concatenate both continuous and
discrete representations above to produce a mixed vector for
each input text.

As described by the organizers of the task, the samples are first
manually classified into two classes: those containing Adverse Drug

1This is the same tweet which is translated into different languages.
2In addition to XLM-R, we experiment with other LPLMs, as described in Section 4.
3We don’t use the Japanese dataset in this method to avoid having to use a specific
tokenization method for this language which does not rely on the space character like
in the other occidental languages.

Events (ADEs) versus those not containing ADEs. Then annotators
labeled the occurring symptoms in the tweets containing ADEs
with 22 most frequent symptoms. This is thus a multilabel classifi-
cation problem where each sample is labeled with zero, one or more
categories. We use a simple feed-forward neural network with one
hidden unit for this task: an input feature vector ®𝑣 (𝑥) is fed to a
hidden layer of ℎ dimensions using the ReLu activation function,
and then the result is passed to the output layer of 22 dimensions
(the number of labels) using the sigmoid activation function. At
each output dimension, if the output value is not less than a prede-
fined threshold 𝜏 then the corresponding label is selected. The best
hyperparameters ℎ and 𝜏 are tuned on a validation dataset.

4 EXPERIMENTS
This section discusses our experimental results and the official
results of our proposed methods for the task on the test set as
announced by the organizers.

4.1 Pretrained Language Models
We carried out experiments with a number of LPLMs including
mBERT, RoBERTa, DeBERTa and XLM-R. We give a brief overview
of these language models as follows:

mBERT is a multilingual version of BERT which follows the
BERT recipe with the same training architecture and objec-
tive [6]. The main difference is the training set where it is
trained on 104 languages from theWikipedia corpus. mBERT
has an encoder-only architecture with 180M parameters.

RoBERTa – Robustly Optimized BERT Pretraining Approach
is built on BERT and offers better training setup [13]. Some
modifications include changing key hyperparameters, re-
moving the next-sentence pretraining objective and training
with much larger mini-batches and learning rates. It uses
a byte-level BPE (Byte-Pair Encoding) as subtoken and not
characters for handling unicode characters. RoBERTa out-
performed BERT in a number of standard NLP benchmarks.

DeBERTa – Decoding-enhanced BERT with disentangled at-
tention improves the BERT and RoBERTa models using two
novel techniques [11]. The first is the disentangled atten-
tion mechanism, where each word is represented using two
vectors that encode its content and position, respectively,
and the attention weights among words are computed using
disentangled matrices on their contents and relative posi-
tions. Second, an enhanced mask decoder is used to replace
the output softmax layer to predict the masked tokens for
model pretraining. These two techniques significantly im-
prove the efficiency of model pre-training and performance
of downstream tasks. The latest version is DeBERTaV3which
improves the original DeBERTa model by replacing masked
language modeling with replaced token detection [10]. This
pretraining approach was proposed by ELECTRA [4] which
is more efficient. DeBERTaV3 proposes the addition of a
novel gradient disentangled embedding layer which helps
improve both training efficiency and the quality of the pre-
trained model.

XLM-R is XLM-RoBERTa, a model based on RoBERTa. It is
a large multilingual language model, trained on 2.5TB of
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filtered CommonCrawl data of 100 different languages [5]. It
has been shown to outperform mBERT on a variety of cross-
lingual benchmarks. XLM-R performs particularly well on
low-resource languages. This model does not require lang
tensors to understand which language is used, and should
be able to determine the correct language from the input. In
addition, it does not use the translation language modeling
objective as in some other XLM multilingual models; it only
uses masked language modeling one sentence coming from
one language.

Our extensive experiments showed that the XLM-R model gives
the best performance compared to these other models.

4.2 Experimental Results
As described in the previous section, in the vertical data combina-
tion method, we combine all the data in four languages into one
large corpus of about 28,670 samples. This corpus is randomly di-
vided into the training set, validation set and test set with ratios
80%, 10% and 10% respectively. More precisely, the training data
has 25,484 samples, the test and validation data have 3,186 samples.
The data is trained using the XLM-R (large) pretrained model. This
approach uses the first featurization method as described in the
previous section.

Some hyper-parameters of our models are as follows. The batch
size is 128, the learning rate is 2 × 10−5, the weight decay is 0.01
and the model is trained in 50 epochs. The embeddings layer is
fine-tuned along with the model.

Tables 1, 2, 3 show the results of this method on the test set; all
the scores are obtained by the evaluation script provided by the
organizers.4

Table 1: Binary scores (ADE vs. no ADE) of the vertical
method

no ADE 0.99 0.98 0.98 2229

ADE 0.95 0.97 0.96 957

accuracy 0.98 3186

macro avg 0.97 0.98 0.97 3186

weighted avg 0.98 0.98 0.98 3186

precision recall f1-score support

Table 2: (Individual) Per Class Scores of the vertical method

C0027497 0.96 0.98 0.97 320

C0011991 0.94 0.96 0.95 196

C0015672 0.97 0.99 0.98 92

C0042963 0.94 0.99 0.96 82

label precision recall f1-score support

Continued on next page

4https://github.com/lraithel/ntcir_2023_SMA

Table 2: (Individual) Per Class Scores of the vertical method
(Continued)

C0003123 0.98 0.99 0.98 96

C0018681 0.98 1.00 0.99 102

C0015967 0.94 0.97 0.95 65

C0206062 1.00 1.00 1.00 4

C0023895 1.00 0.94 0.97 17

C0012833 0.92 1.00 0.96 48

C0030193 0.94 0.90 0.92 114

C0002170 0.93 1.00 0.96 27

C0004096 0.98 1.00 0.99 42

C0022658 0.86 1.00 0.92 6

C0020517 0.91 0.96 0.93 67

C0917801 0.92 0.97 0.95 37

C0009806 0.91 0.95 0.93 22

C0005956 1.00 0.62 0.77 8

C0000737 0.92 0.96 0.94 136

C0010692 0.50 1.00 0.67 2

C0015230 0.95 0.95 0.95 39

C0149745 0.79 1.00 0.88 15

micro avg 0.95 0.97 0.96 1537

macro avg 0.92 0.96 0.93 1537

weighted avg 0.95 0.97 0.96 1537

samples avg 0.29 0.29 0.29 1537

label precision recall f1-score support

Table 3: (Full) Per Label Scores of the vertical method

0 1.00 1.00 1.00 68555

1 0.95 0.97 0.96 1537

accuracy 1.00 70092

macro avg 0.97 0.98 0.98 70092

weighted avg 1.00 1.00 1.00 70092

Exact accuracy 0.9698

precision recall f1-score support

It is observed that this method gives quite a good performance.
Most of the labels have an f1 score greater than 0.90. The rare
labels with low support values have mediocre scores: C0010692
(hemorrhagic cystitis) of 0.67 f1, C0005956 (bone marrow dysfunction)
of 0.77 f1. The exact accuracy of this simple method on our test set
is also is quite high, of 96.98%.
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4.3 Official Results
We use all the provided training data to train models and perform
inference on the official test set for official submissions. In general,
the vertical data combination approach gives better results than
those of the horizontal approach.

Table 4: Binary Scores (ADE vs. no ADE) of the vertical ap-
proach using the XLM-R model.

ja fr en de
f1-score no ADE 0.92 0.91 0.91 0.91
f1-score ADE 0.80 0.79 0.79 0.78
accuracy 0.88 0.88 0.88 0.87

Using the same XLM-R language model, the horizontal data
combination approach has an f1-score no-ADE of 0.84, an f1-score
ADE of 0.67 and an accuracy of 0.79 for all the four languages.5

Table 5 shows the individual scores of our approaches. The first
four columns are test results of the vertical system on the four
corresponding languages. The last column contains scores of the
horizontal system. However, by mistake, we used the universal
pretrained embeddings for the horizontal system rather than the
intended XLM-R pretrained embeddings. Therefore, these results
are not comparable.

Table 5: (Individual) Per Class Scores of our ap-
proaches

C0027497 0.9 0.88 0.87 0.87 0.77

C0011991 0.84 0.78 0.8 0.79 0.63

C0015672 0.86 0.83 0.85 0.82 0.70

C0042963 0.82 0.83 0.76 0.77 0.72

C0003123 0.85 0.78 0.84 0.81 0.57

C0018681 0.85 0.85 0.88 0.83 0.80

C0015967 0.67 0.64 0.67 0.62 0.43

C0206062 0.5 0 0 0 0

C0023895 0.5 0 0 0 0.40

C0012833 0.67 0.69 0.61 0.71 0.62

C0030193 0.56 0.52 0.53 0.5 0.28

C0002170 0.82 0.82 0.89 0.78 0.64

C0004096 0.91 0.91 0.94 0.91 0.82

C0022658 0.8 0.67 0.8 0.8 0

C0020517 0.76 0.77 0.74 0.74 0.58

C0917801 0.69 0.69 0.7 0.67 0.48

label ja fr en de horiz.

Continued on next page

5Note that in this approach, it is obvious that we have the same scores for all the
languages.

Table 5: (Individual) Per Class Scores of our ap-
proaches (Continued)

C0009806 0.81 0.82 0.79 0.79 0.79

C0005956 0.67 0.5 0.5 0.5 0

C0000737 0.8 0.7 0.78 0.76 0.55

C0010692 0.5 0.67 0.5 0.57 0

C0015230 0.71 0.71 0.73 0.72 0.56

C0149745 0.73 0.68 0.72 0.69 0.33

micro avg 0.79 0.76 0.78 0.76 0.62

macro avg 0.74 0.67 0.68 0.67 0.50

weighted avg 0.79 0.75 0.77 0.76 0.60

samples avg 0.23 0.21 0.22 0.22 0.18

label ja fr en de horiz.

Finally, Table 6 shows the performance of our systems on the
official test set as announced by the organizers. The second and the
third featurization methods do not result in better performance in
our experiments. Their results are therefore excluded in this paper.

Table 6: (Full) Per Label Scores of our systems

ja fr en de horiz.
0 1.0 1.0 1.0 1.0 0.99
1 0.79 0.76 0.78 0.76 0.62
accuracy 0.99 0.99 0.99 0.99 0.98
macro avg 0.89 0.88 0.89 0.88 0.80
weighted avg 0.99 0.99 0.99 0.99 0.98
Exact accuracy 0.83 0.83 0.84 0.83 0.70

5 CONCLUSIONS
In this paper, we described our approaches to the MedNLP-SC
subtask of the NTCIR-17. We use two data combination methods
along with large multilabel pretrained language models and a sim-
ple neural network models. Experimental results show that these
approaches have a promising results despite their simplicity.
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