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ABSTRACT
The Social Media Adverse Drug Event Detection (SM-ADE) track
of the NTCIR-17 MedNLP-SC shared task aims to identify adverse
drug events (ADE) in Japanese, English, French, and German social
media texts. In this paper, we describe selected details of our con-
tribution addressing the shared task. As a base model, we fine-tune
RoBERTa models for the different language subtasks. In addition,
we apply ensemble learning and data augmentation techniques. By
leveraging data augmentation, we successfully elevate the resulting
micro-averaged 𝐹1 scores on the German dataset by 5𝑝𝑝 compared
to the baseline. The application of ensemble learning yields a re-
markable improvement of 7𝑝𝑝 . Through combining RoBERTa with
these methods, we achieve promising results in the challenge. Our
best runs accomplish exact accuracy scores between 0.84 and 0.87
and per-class 𝐹1 scores between 0.77 and 0.82, consistently achiev-
ing the second-best results across all languages.
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1 INTRODUCTION
The NTCIR-17 Medical Natural Language Processing for Social
Media and Clinical Texts (MedNLP-SC) shared task investigates dif-
ferent medical applications for natural language processing (NLP).
In this work, we propose an approach for the Social Media Adverse
∗Smilla Fox and Martin Preiß share first authorship.

Drug Event Detection subtask [14]. The goal of this task is to iden-
tify adverse drug events (ADEs) in short messages such as tweets
from X (formerly known as Twitter). This is a promising direction
to identifying sofar unknown side effects, e.g., for recently intro-
duced drugs, as an increasing number of people use the internet to
share details about their personal experiences.
We frame ADE detection problem as a multi-label classification
task, where the input is a text snippet and the output consists of
labels for 22 ADE classes. To this end, it is crucial that the model
can identify the different symptoms, but also understand whether
they are indeed ADEs caused by medication or, for instance, just
symptoms which caused the medication usage in the first place.
Our method builds upon a simple Transformer-based classification
model, using a pre-trained RoBERTa encoder [9]. This is similar
to the baseline proposed by the task organizers [14]. We extend
this approach through additional data augmentation and ensemble
learning steps. For augmentation, we generate additional tweets us-
ing GPT-3.5, an instruction-tuned large language model (LLM) [11].
Furthermore, we combine several models using ensemble learning.
We evaluate these two techniques individually and in combination.
The methods were applied for all languages relevant to the task, i.e.,
German, English, Japanese, and French. We submitted predictions
obtained using these methods on the held-out test set of the tasks
and discuss the official results in this paper.
The remainder of this work is structured as follows: In section 2, we
set our work in the context of related work. In section 3, we present
the datasets we use and we share details about our incorporated
methodology in section 4. We describe our experimental setup in
section 5 and present the acquired results in section 6. We discuss
our results in section 7 and conclude our work in section 8.

2 RELATEDWORK
A number of prior work exists, which concern ADE detection in
medical text documents. Murphy et al. [10] review 29 articles deal-
ing with text from electronic health records in survey on supervised
NLP methods for this task. Furthermore, Lardon et al. [7] reviewed
ADE detection in social media text already in 2015. More recently,
Raithel et al. [12] have investigated detection of ADE from a Ger-
man patient online forum.
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Numerous approaches for detecting ADEs using NLP focus on the
simple binary classification task of determining whether a text
contains ADE mentions or not. There are two main types of texts
that are usually used as input.

Lately, the problem has been mainly approached using deep learn-
ing methods. For instance, Lee et al. [8] and Huynh et al. [6] use
convolutional neural networks to classify tweets into those con-
taining ADEs and those not containing ADEs. Instead of training
them in a supervised way, the authors propose a semi-supervised
approach to deal with the problem of scarce labeled data. Similar
to our method, the predictions of different models are combined in
an ensemble and a result is obtained using majority voting.

Another semi-supervised model was proposed by Gupta et al. [5].
The authors perform binary ADE classification on tweets with
a bidirectional LSTM-based model. Before being fine-tuned in a
supervised way, the model is pre-trained on unlabeled data for
the task of predicting a drug name from its context in the tweet.
More recent research investigates ADE detection as a multi-label
classification task, similar to our approach. Chaichulee et al. [2]
work with a dataset of free-text allergy records from electronic
health records. Just like the MedNLP-SC shared task dataset, it
is heavily unbalanced.The authors propose the AllergyRoBERTA
model, which was pre-trained from scratch on drug allergy reports,
and compare it to the pre-trained XLM-RoBERTa model.

Instead of addressing the scarcity of labeled data by using semi-
supervised learning methods, we propose the use of the recent
instruction-tuned LLM ChatGPT 3.5 to generate additional training
data [11]. Similar to prior work, we also use ensemble learning
methods to combine the strengths of different models effectively.

3 MATERIALS
For the challenge, we have access to four multi-label datasets in
Japanese, English, French, and German. The data consists of syn-
thetic social media texts in the style of tweets, each manually an-
notated with ADEs. The text was generated in Japanese and then
translated into the other languages. A more detailed overview of
the data can be found in the task paper [14].

The datasets are divided into a publicly available training and a
held-out test set. Our access to labels is constrained to the primary
training subset, encompassing 7, 964 individual data instances. The
corresponding held-out test set comprises 1, 993 instances and will
be referred to as testfinal.

Exploratory data analysis reveals a heavily imbalanced class distri-
bution. For example, the most occurring ADE is nausea with 925
data points, while the class bone marrow dysfunction occurs only
nine times. In addition to class imbalance, the number of ADEs
per instance also varies substantially. Approximately 68.5 % of the
dataset does not have any ADEs, whereas 16.7% have one, 11.3%
have two and only 3.5 % have three or more ADEs.

For evaluating our approaches, we organize the available training
data into our own separate training, validation, and test subsets,
maintaining a ratio of 70 %, 15 %, and 15 % respectively. To address

System message: ’Du bist ein Tweet Generator. Die
Tweets enthalten keine Hashtags und keine Emojis. For-
matiere deine Antworten immer wie folgt:\n1. "Tweet"\n2.
"Tweet"\n3.’
Translation: ’You are a tweet generator. The tweets do not
contain hashtags or emojis. Always format your answers as
follows: \n1. "Tweet"\n2. "Tweet"\n3.’

User message: ’Generiere 20 Tweets, die alle folgende
Bedingungen erfüllen: Die schreibende Person erzählt von
{symptom} als Nebeneffekt eines Medikaments, das sie
genommen hat. Der spezifische Name des Medikaments
wird erwähnt. Dafür wird der Platzhalter [Medikamenten-
name] genutzt. Neben {symptom} werden keine weiteren
Nebenwirkungen erwähnt. In einigen Sätzenwird erwähnt,
wogegen das Medikament genommen wurde.’
Translation: ’Generate 20 tweets that meet all of the follow-
ing conditions: The person writing talks about {symptom}
as a side effect of a medication they have been taking. The
specific name of the drug is mentioned. The placeholder [drug
name] is used for this. No other side effects besides {symptom}
are mentioned. In a few sentences, it is mentioned what the
medication was taken for.’

Figure 1: Prompt used to generate additional tweets including
English translation.

the inherent imbalance among label classes, we use a stratified sam-
pling. Furthermore, we combine all datasets to create a multilingual
dataset by concatenating the different splits. To ensure comparabil-
ity with monolingual datasets, we employ the same random seed
for splitting each monolingual dataset. This maintains the class
distribution and prevents dependencies between splits.

4 METHODS
In this section, we share details about our incorporated method-
ology as well as our data augmentation and ensemble learning
approaches.

4.1 Base Model
Our approach is based on pre-trained RoBERTa models [9], which
are fine-tuned it on language-specific datasets. For all languages
except English, we use the large version of the multilingual XLM-
RoBERTa [3] through the model from Transformers library [15].
This version of RoBERTa was trained on a multilingual dataset
containing texts in 100 languages, including the four languages
relevant for the shared task. For the English dataset, we use a
standard RoBERTa model (large) pre-trained on English text only.
For each language-specific dataset, we fine-tune the model for our
multi-label classification task.
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4.2 Data Augmentation
To address the issue of class imbalance, we generate artificial tweets
similar to the ones in our dataset. To this end, we use the instruction-
tuned gpt-3.5-turbo model through the OpenAI API [11].

Designing an appropriate prompt template was an iterative process.
Our final prompt is shown in Figure 1: it is split into a system
message that informs about the general behavior and style of the
output and a user message that contains the concrete request. It
enforces that each tweet should contain only one adverse drug
event, to make labeling easier. The prompt contains a placeholder
where we insert the side effect symptom that should be mentioned
in the generated tweets. We include some other requirements to
make the generated tweets similar to the ones from the dataset,
for example, mentioning a specific drug and which disease it was
taken for.

With the designed prompt, 20 tweets at a time are generated. Cre-
ating more tweets at a time often resulted in excessively repetitive
content. Therefore, we prompt the model several times for each
symptom. We then process the generated response by extracting
the single tweets and replacing the medication placeholder with a
name randomly chosen from a set of 22 medicament names. Addi-
tionally, we manually review all tweets and adjust those mentioning
unwanted ADEs, remove duplicates, or include other mistakes. For
example, a frequent problem are tweets with the class pain, men-
tioning headache or abdominal pain. These symptoms belong to
separate classes and should therefore not be classified as pain.

In our experiments, we compare multiple options for including
generating examples. Either, we add examples for all classes or for
low-frequency classes only. Due to the time-consuming manual cu-
ration process, we do not generate tweets for all languages. Instead,
we translate the generated and filtered German tweets with a ma-
chine translation models. To generate the English version from Ger-
man, we use the pre-trainedmodel Helsinki-NLP/opus-mt-de-en
through the Transformers library. To translate from English to
French and Japanese, we use similar models.

4.3 Ensemble Learning
Ensemble learning is a powerful way to increase accuracy and
model robustness for classification tasks [4, 13, 16]. Multiple base
learners are trained on a transformation of the original training data.
For inference, their predictions are combined by a voting schema or
mathematical function. The number of base learners (ensemble size)
is a crucial hyperparameter. In our approach, we use an ensemble
size of five, which is a trade-off between computational cost and
performance improvement. Besides, using an odd number, there
will always be a majority when voting is used. There are multiple
approaches for creating ensembles. On the dataset level, transfor-
mations are applied to create different versions of the training data.
We consider the following alternatives.

4.3.1 Dataset Methods. On the base learner level, we only change
the random seed for every base learner. Alternative methods con-
sider different hyperparameters for every base learner, or even
different base learner architectures.

K-fold A k-fold split is created with the combined training and
validation data. These new splits are then distributed to the k
base learners.

Shuffle For every base learner, the combined training and vali-
dation data is shuffled randomly and split again without strati-
fication.

4.3.2 Voting Techniques. There are also different options on the
voting level, where the decision is made on how to combine the
base learner predictions. Here, computing different variations is
relatively cheap—therefore, we compute them all and choose the
ones that perform best.

MajorityVote (MV) The label is true when the majority of base
learners decide on this label.

AvgProbVote (APV) The average is computed out of the base
learners’ probability outputs. The label is true when the average
is greater or equal to the decision threshold.

MaxProbVote (MaxPV) The maximum is taken out of the base
learners’ probability outputs. Label is true when the maximum
is greater or equal to the decision threshold.

MedianProbVote (MedPV) The median is computed out of the
base learners’ probability outputs. The label is true when the
median is greater or equal to the decision threshold.

WeightVote (WV) Aweight from 1 to k is selected for every base
learner, resulting from the micro F1 score on the validation split.
The label is true when the sum of the weighted base learner
predictions is greater or equal to the sum of 1 to k divided by 2.

4.3.3 Further Approaches. Furthermore, we evaluate the impact
of augmentation on ensemble learning. To this end, we apply the
best selected augmentation method to the training data before
using the corresponding dataset-level method. Moreover, we test
the difference between monolingual and multilingual ensembles by
building an ensemble with the multilingual dataset, combined from
all language-specific subsets.

4.4 Metrics and Model Selection
For selecting the best combinations of ensemble learning and aug-
mentation methods, we evaluate mainly on the German data. The
main metric for our evaluation is the 𝐹1 score, micro-averaged
across all classes. This metric correlates well with the metrics rel-
evant for the shared task evaluation [14]. To determine the im-
pact of the augmentation on class imbalance, we also report the
macro-averaged 𝐹1 scores for these experiments, as it better reflects
improvements for rare classes.

First, we perform an extensive hyperparameter sweep for model
selection. Therefore, we use the Weights and Biases platform with
a Bayesian search strategy, maximizing the micro 𝐹1 score to select
the optimal hyperparameters for the base model [1]. We select the
following hyperparameters for the sweep: batch size, learning rate,
number of training epochs, decision threshold, and weight decay.
Preliminary experiments suggested that those hyperparameters
have the most substantial impact. For the other hyperparameters,
we simply use the default values of the Transformers library [15].
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The following hyperparameters resulted in the best performance
on our internal test set:

• Batch size of 64,
• Learning rate of 2.3635 × 10−5,
• Training epochs of 20,
• Decision threshold set at 0.5, and
• Weight decay of 0.018232.

After setting the hyperparameters for the base models, we conduct
experiments to select the best augmentation and ensemble methods.
Finally, we select the three best runs for the shared task submission.
By selecting a different method for each run, we have the chance
to compare different approaches as follows.

(1) We use a pure base model, fine-tuned with the best augmenta-
tion method for our first submission for each language.

(2) The second submission is an ensemble obtained with the re-
spective, best ensemble learning method. Thus, we submit the
best augmentation and best ensemble learning method found
for each language.

(3) The final submission is either based on a multilingual ensemble,
or an ensemble with augmented training data, depending on
which run performs better on our internal test data. Thereby,
we can also evaluate the combination of ensemble learning with
either augmentation or multilingual data.

5 EXPERIMENTS
In this section, we share details about our experimental setup for
data augmentation and ensemble learning. We also introduce the
approaches that we evaluate on the held-out test set (testfinal).

5.1 Data Augmentation
We compare different runs to evaluate our data augmentation ap-
proach. We generate 60 examples for each class, except for pain, for
which we generate 68 examples. For the “all” setting, we add the
generated examples for all classes. For other runs, we only include
generated examples for selected classes. Here, we select classes
for which the model performed badly in the baseline run, or for
which we do not have many examples in the dataset. We evaluate
approaches using different subsets of classes. In the “3-classes”-run,
we add generated examples for the classes bone marrow dysfunction,
interstitial lung disease, and pain. The “6-classes” run additionally
includes examples for hemorrhagic cystitis, renal impairment, and
liver damage.

5.2 Ensemble Learning
To find the best ensemble methods, we first create ensembles with
the two dataset-level methods “K-fold” and “Shuffle”. Those dataset
methodsmake use of either the default train data, the train data with
the best-chosen augmentation method, or our multilingual dataset.
Every base learner is trained on the transformed data separately.
After training, we compute micro 𝐹1 scores on the internal test
data with all voting techniques, selecting the best two approaches
for the submission as described in the previous section. Further-
more, we compare the performance of the best base learners with

Table 1: Results of Augmentation Experiments on the Ger-
man Test Set

Baseline All 6-classes 3-classes
Micro 𝐹1 score .830 .819 .833 .840
Macro 𝐹1 score .758 .715 .782 .773

the ensemble results, to determine whether the ensemble improve
performance.

5.3 Submission
For each language, three runs are submitted with predictions for the
testfinal dataset. We always submit one augmentation run (submis-
sion 1), using generated examples for three classes, as explained in
subsection 4.2. Additonally, we submit the following runs, selected
according to their performance on our internal test set:

• For the German dataset, we use an ensemble using the K-fold
dataset technique and MajorityVote (submission 2), as well as
an ensemble trained on the multilingual dataset with K-fold
and AvgProbVote (submission 3),

• For the English dataset, we submit an ensemble with K-fold
dataset re-combinations and MajorityVote (submission 2), as
well as an ensemble with K-fold and AvgProbVote with Aug-
mentation (submission 3),

• The ensemble submissions for Japanese are a combination of
Shuffle and AvgProbVote (submission 2) and an ensemble with
Shuffle and WeightVote and data augmentation (submission 3),
and

• For the French dataset, we include an ensemble with Shuffle
and AvgProbVote (submission 2) and an ensemble trained on
the multilingual dataset with K-fold and AvgProbVote (submis-
sion 3).

We compare these runs to the best performing model 𝑋𝐿𝑀 − 𝑅𝑎𝑙𝑙
from the task paper [14], which is an XLM-RoBERTa model fine-
tuned on the combined dataset of all four languages.

6 RESULTS
In this section, we share our internal experimental results and
ablation experiments on the German dataset. Furthermore, We
present the results for all languages and runs in the final submission.

6.1 Data Augmentation
Table 1 shows the results for different choices of classes subject
to data augmentation. We can see that the run using generated
examples for all classes falls approx. one to four pp behind the
baseline results. However, adding examples for only some classes
performs better. For example, the “6-classes” run achieves slightly
better scores with 0.3 pp compared to the baseline for the micro
𝐹1 score and clearly exceeds the baseline with 2 pp regarding the
macro 𝐹1 score. The best results are obtained using the “3-classes”
run, with better results than the baseline for both 𝐹1 scores and the
best overall results for the micro 𝐹1 score.
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Table 2: Selected Individual Symptom 𝐹1 scores for Augmen-
tation Experiments on German Test Set

Baseline 6-classes 3-classes
Interst. Lung Disease .500 .800 .800
Bone Marrow Dysf. .000 .667 .000
Pain .468 .553 .617
Hemorrhagic Cystitis 1.000 1.000 .667
Renal Impairment .500 .545 .444
Liver Damage .667 .571 .571

Table 3: Micro 𝐹1 scores for Ensemble Learning Experiments
on German Test Set. For every ensemble, the best base learner
(BL) is compared with the results of the voting techniques.
The underlined values are the ones submitted for the chal-
lenge.

BL MV APV MaxPV MedPV WV
Shuffle .836 .835 .838 .831 .835 .833
K-fold .841 .846 .843 .830 .846 .844
Shuffle+Aug .837 .834 .838 .827 .834 .830
K-fold+Aug .823 .830 .831 .819 .830 .826
Shuffle+Multi .841 .844 .843 .830 .844 .841
K-fold+Multi .838 .846 .849 .823 .846 .844

We also compute individual 𝐹1 scores for the classes that we add
generated examples for in the “6-classes” run, which are depicted
in Table 2. The first three rows include the classes that we used in
the “3-classes” run. For two of these classes, the 𝐹1 scores surpass
baseline results. For the “6-classes” run, 𝐹1 scores for all classes
except liver damage and hemorrhagic cystitis are improved.

6.2 Ensemble Learning
Table 3 shows the micro-averaged 𝐹1 scores achieved by the en-
sembles on our German test data. We can see there that the best
base learner always performs worse than the best ensemble voting
method. Considering the dataset techniques, the K-fold ensemble
performs better on the pure German data and multilingual data
compared to the shuffling, except when MaxProbVote voting is
used.

Regarding the different datasets, the augmented data delivers the
worst results, and the ensembles trained on the multilingual dataset
perform best. In combination with K-fold, the ensemble trained
on the pure German also performs well. The two best runs overall
are the pure German K-fold ensemble with MajorityVote and the
Multilingual K-fold ensemble with AvgProbVote.

6.3 Final Submission Results
Table 4 summarizes our results on the testfinal dataset. For all our
submission results, we outperform the baseline in across all metrics.
This confirms the results we obtained using our internal develop-
ment test set. The difference to the baseline is especially high on
the German dataset. Here, the per-class 𝐹1 score (micro averaged) is
improved by 5 pp compared to the baseline in the augmentation run
and by 7 pp in the ensemble runs. The performance improvements

compared to the baseline are also evident for all other languages.
For most metrics, the augmentation approach is in third place, and
one of the ensemble submissions comes out on top. The results for
the two ensembles are always quite similar. Often, none of them is
consistently better in all metrics.

Besides these differences between our approaches, we also see
differences between languages. On the Japanese dataset, we get
the best results, whereas the German and French datasets have
the lowest scores. The highest overall scores are achieved by the
first Japanese ensemble without augmentation. The exact accuracy
reaches 0.87, and the per-class 𝐹1 score 0.82. Between the different
languages, the best accuracy ranges from 0.84 to 0.87, and the per-
class 𝐹1 scores from 0.77 to 0.82.

7 DISCUSSION
In the following, we discuss our experiments and the obtained
results of the task. Additionally, we address limitations of our work.

7.1 Impact of Data Augmentation
Our experiments indicate that adding generated data for a small
number of classes might support the model to discriminate these
classes better, resulting in overall increased performance. Especially
when analyzing the 𝐹1 scores for the individual classes in Table 2,
we notice that for the “3-classes” run the goal of improving the
predictions for the selected classes was achieved in two of three
cases. This is the desired result because it means that the model
successfully learned from the additional generated examples. Still,
we must evaluate these scores critically. Especially for interstitial
lung disease and bone marrow dysfunction, our test dataset contains
only a few examples. Therefore, the meaningfulness of 𝐹1 scores
for these classes are limited.

We find that adding generated data only improves performance
when performed for few classes. When adding data for more classes,
performance decreases. The suspected reason could be a decrease
in the diversity of training examples, as the generated tweets tend
to look very similar. Through more careful prompt design and
optimization of the tweet generation process, we might obtain
more diverse generated samples. Then, we could add more of them
to our dataset to further improve the classification results.

In the “6-classes” run, we can see that even though the micro 𝐹1
score does not significantly outperform the baseline, the macro
𝐹1 score is the highest of all runs. We expect that in this case, the
small classes for which examples are added are improved and other
classes with many examples get worse due to less diversity in the
sentences. The improvement of small classes can be verified with
the individual 𝐹1 scores in Table 2. When interpreting the results,
we need to consider that the tweets we generated only contain
one ADE per tweet. Hence, adding too many of them could also
negatively affect the model’s ability to predict of multiple ADEs
in one tweet. It is likely that adding generated tweets with several
ADEs per tweet would further improve the results.

7.2 Impact of Ensemble Learning
We outlined in subsection 6.2 that the best base learner performs
always worse than the best ensemble learning. Besides that, we see
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Table 4: Final submission results evaluated on testfinal. For all submitted runs, we report exact accuracy (Acc.), binary 𝐹1 score
(Bin. F1), per label 𝐹1 score (Label F1), and the micro averaged 𝐹1 score per class. As a baseline, we refer to the XLM-R𝑎𝑙𝑙 run
provided by the MedNLP-SC organizers [14].

# Language / Submission Acc. Class Bin. F1 Label F1 Class F1

German

MedNLP-SC Baseline .80 non-ADE
ADE

.89

.74
.99
.71 .71

1 German Data + Augmention .83 non-ADE
ADE

.90

.77
1.00
.76 .76

2 German Data + Ensemble (K-fold + MV) .84 non-ADE
ADE

.91

.78
1.00
.78 .78

3 Multilingual Data + Ensemble (K-fold + APV) .85 non-ADE
ADE

.92

.80
1.00
.78 .78

English

MedNLP-SC Baseline .83 non-ADE
ADE

.91

.78
.99
.76 .76

1 English Data + Augmentation .85 non-ADE
ADE

.91

.80
1.00
.78 .78

2 English Data + Ensemble (K-fold + MV) .84 non-ADE
ADE

.92

.81
1.00
.79 .79

3 English Data + Augmentation + Ensemble (K-fold + APV) .85 non-ADE
ADE

.92

.81
1.00
.79 .79

Japanese

MedNLP-SC Baseline .84 non-ADE
ADE

.91

.79
1.00
.77 .77

1 Japanese Data + Augmentation .85 non-ADE
ADE

.91

.80
1.00
.80 .80

2 Japanese Data + Ensemble (Shuffle + APV) .87 non-ADE
ADE

.92

.82
1.00
.82 .82

3 Japanese Data + Augmentation + Ensemble (Shuffle + WV) .86 non-ADE
ADE

.92

.82
1.00
.81 .81

French

MedNLP-SC Baseline .81 non-ADE
ADE

.90

.76
.99
.73 .73

1 French Data + Augmentation .83 non-ADE
ADE

.91

.78
.99
.75 .75

2 French Data + Ensemble (Shuffle + APV) .84 non-ADE
ADE

.92

.80
1.00
.77 .77

3 Multilingual Data + Ensemble (K-fold+APV) .84 non-ADE
ADE

.91

.79
1.00
.77 .77
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in the final submission Table 4 that every ensemble performs better
than the methods without ensemble methods (augmentation and
baseline). This finding highlights that ensemble learning indeed
improves the prediction performance of the classification task, as
expected.

Amajor learning comes from choosing the underlying dataset. Over-
all, the best results in the competition come from the combination
of multilingual or augmented data with ensemble techniques. In
the German and French dataset, the multilingual ensembles achieve
the best results. This is opposed to the situation for the English and
Japanese dataset, where the augmented ensembles perform better
than the multilingual ensembles. We assume that multilingual en-
sembles just perform better on more difficult tasks. Detailed results
can be found in Appendix A.

We suspect that the quality of the translated German and French
data might be lower compared to Japanese and English. Overall, the
German and French have lower results compared to English and
Japanese. Nevertheless, both multilingual and augmented ensem-
bles deliver comparable good results. However, the improvements
are not consistently observed or large enough to derive specific con-
clusions from them. Due to time constraints, we could not evaluate
the combination of augmentation and training on the multilingual
dataset. Such a combination might improve the evaluation results
even further.

7.3 Submission Performance
The final submission results show that our approaches generalize
well and produce competitive results even on unseen data. The
substantial difference between our scores and the baseline shows
that both augmentation and ensemble learning both are valuable
additions to the baseline approach of using only a standard pre-
trained RoBERTa model. It is not surprising that we can see an
especially large difference to the baseline on the German dataset,
as this is the data we used to select and tune our methods.

The combination of augmentation and ensemble learning was only
used in a subset of submissions, so we cannot finally evaluate
how well this approach works in general. Our results suggest that
the impact of augmentation is rather small, compared to using
standard ensemble learning. The same is true for the training on
multilingual datasets. These combinations could still be investigated
more intensively, but were out of the scope of this work.

7.4 Limitations
While there is potential for improvement as touched above, we
suspect that the achievable performance is limited by the quality of
the dataset. Some generated tweets do not seem plausible, which
might be caused by the generative model or the translation process.
During manual inspection of the data, we noticed instances that
pose challenges regarding comprehension or raise suspicions re-
garding the accuracy of their labeling. An example of it is depicted
in Figure 2. Here it is difficult to understand whether pain is a side
effect or not.

Text: I had my second steroid shot this week and it seems
more painful than last time. It’s a little better than yester-
day, but... I was applying it before I went to bed today like
crazy, so I guess it’s not working <url>
Label: None

Figure 2: Example of an ambiguous tweet, where it is unclear
whether pain is an ADE or not.

8 CONCLUSION
In this work, we presented our contribution to the NTCIR-17 SM-
ADE subtask. We achieved very good performance results by fine-
tuning RoBERTa models on monolingual and multilingual datasets
in combination with data augmentation and ensemble learning
methods. By using fine-tuned combinations of both techniques, we
have achieved the second-best results across all languages in the
main challenge metrics. Having said this, we still believe that our
approach can be improved further, e.g., by generating examples
with multiple positive labels or combining the multilingual ensem-
bles with data augmentation. Furthermore, a more comprehensive
analysis of different base learner variations is warranted. Neverthe-
less, our approach generalizes well to the held-out test data and is
also easy to adapt for application on similar NLP tasks.
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A APPENDIX

Table 5: Micro F1 Scores for Ensemble Learning Experiments
on French Test Set as described above.

BL MV APV MaxPV MedPV WV
Shuffle .842 .853 .856 .819 .853 .848
K-fold .837 .841 .844 .825 .841 .840
Shuffle+Aug .843 .847 .852 .814 .847 .851
K-fold+Aug .844 .842 .846 .821 .842 .839
Shuffle+Multi .843 .844 .844 .832 .844 .843
K-fold+Multi .852 .863 .864 .841 .863 .859

Table 6: Micro F1 Scores for Ensemble Learning Experiments
on English Test Set as described above.

BL MV APV MaxPV MedPV WV
Shuffle .862 .861 .858 .842 .861 .866
K-fold .857 .869 .868 .842 .869 .869
Shuffle+Aug .861 .861 .866 .849 .861 .860
K-fold+Aug .866 .872 .873 .854 .872 .871
Shuffle+Multi .858 .862 .860 .838 .862 .855
K-fold+Multi .860 .863 .865 .840 .863 .864

Table 7: Micro F1 Scores for Ensemble Learning Experiments
on Japanese Test Set as described above.

BL MV APV MaxPV MedPV WV
Shuffle .880 .888 .891 .859 .888 .881
K-fold .884 .886 .888 .868 .886 .884
Shuffle+Aug .888 .888 .889 .871 .888 .891
K-fold+Aug .881 .883 .879 .870 .883 .886
Shuffle+Multi .880 .885 .882 .857 .885 .884
K-fold+Multi .875 .877 .879 .860 .877 .870
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