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ABSTRACT 

The IMNTPU team engaged in the NTCIR-17 RealMedNLP task, 

specifically focusing on Subtask1: Adverse Drug Event detection 

(ADE) and the challenge of identifying related radiology reports. 

This task is centered on harnessing methodologies that offer 

significant aid in real-world medical services, especially when 

training resources are limited. In our approach, we harnessed the 

power of pre-trained language models (PLMs), particularly 

leveraging models like the BERT transformer, to understand both 

sentence and document structures. Our experimentation with 

diverse network designs based on PLMs paved the way for an 

enlightening comparative analysis. Notably, BioBERT-Base 

emerged as a superior contender, showcasing commendable 

accuracy relative to its peers. Furthermore, our investigation made 

strides in the realm of one-shot learning for multiclass labeling, 

specifically with the GPT framework. The insights gathered 

emphasized the necessity for more specialized strategies, 

suggesting avenues for future research in multiclass labeling tasks. 

KEYWORDS 

Medical Natural Language Processing, Adverse Drug Event, 

Large Language Models, Social Media, Multi-class Classification. 

TEAM NAME 

IMNTPU 

SUBTASKS 

SM-ADE-EN 

1 INTRODUCTION 

As technologies are growing over the years, medical histories 

are updated to electronic format from the level of paper records, 

along with the increasing significance of information processing 

technology in the medical field. Among the shared task workshop 

NTCIR-17 Real-MedNLP task is one such task employing actual 

medical documents in the case of medical language processing 

(case reports and radiology reports).[1] This task is widely utilized 

to endorse the development of practical systems of practical 

medical NLP tools applicable in the hospital for the medical 

industry to support medical decisions and help physicians and 

paramedical staff support various medical services. This remains 

the ultimate goal for the organizers since they are involved in 

restructuring the scheme (so-called medical AI task). This task 

delivers core resources into two; (1) Social media corpus (shortly 

MedTxt-SM) and this task is divided into two parts:(a) 

Classification of messages into “contains ADE (22 symptoms)” 

vs. “does not contain ADE (22 symptoms)”, (b)multi-labeling of 

symptoms for all documents containing ADEs.2) Radiology-

Report corpus (shortly MedTxt-RR). 

It's fascinating to learn about IMNTPU's involvement in the 

Real-MedNLP track this year, particularly in the subtask focusing 

on the social aspect of Adverse Drug Event (ADE) detection from 

English social media texts. Their approach involved constructing 

pre-trained language models (PLM). The paper will likely provide 

detailed insights into their methodologies and will discuss the 

official results. In the context of ADE, the primary objective of 
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Table 1 Model Summary 

Models Pre-trained Data Backbone Features 

BioBERT-

Base 

PubMed abstracts 

and PubMed Central 

full-text articles 

BERT 
Mixed 

Domain 

Roberta-

Base 

Wikipedia, books, 

and publicly 

available data 

BERT 
Mixed 

Domain 

Roberta-

Large 

Wikipedia, books, 

and publicly 

available data 

BERT 
Mixed 

Domain 

GPT 3.5 

Wikipedia, books, 

and publicly 

available text data 

GPT 3 
Mixed 

Domain 

GPT 4.0 

Wikipedia, books, 

and publicly 

available text data 

GPT 3.5 
Mixed 

Domain 

 
Table 2 The Main Hyperparameters for Subtask 1-ADE- EN 

Hyperparam

eters 

BioBERT

-Base 

Roberta

-Base 

Roberta

-Large 
GPT 3.5 

Batch Size 16 16 16 

Prompt 

Engineering 

for LLMs 

Optimizer Adam Adam Adam 

Learning Rate 2e-5 5e-5 5e-5 

Epoch 10 3 3 

 

this task is to extract ADE information from case reports and 

determine whether a particular drug has elicited a positive or 

negative response. In the realm of pre-trained models, there have 

been various domain-specific models established previously, 

including Biobert[2], Roberta large, and the Generative pre-

trained model (GPT) 3.5. These models have shown promise in 

tasks related to biomedical and healthcare text processing. 

IMNTPU's work in this area is contributing to advancements in 

understanding and handling adverse drug events, particularly in 

the context of social media data. This research is instrumental in 

enhancing the capabilities of natural language processing models 

in healthcare-related applications. 

These domain-specific Bidirectional Encoder Representations 

from Transformers (BERT) based models are predicted to produce 

an improved result in the tasks. We also compared 3 different pre-

trained models and evaluated the results.  

The following section of this paper is organized as follows 

Section 2, defines the related studies whereas Section 3, 

introduces our approaches for each of the subtasks. Section 4 

provides a comprehensive account of the official experiment 

results and a detailed analysis. Finally, in Section 5, we present 

our conclusions obtained from this study. 

2 RELATED WORKS 

2.1 BioBERT-Base 

BioBERT becomes more adept at handling biomedical 

terminology, scientific jargon, biomedical question answering, 

and context-specific information [2,3]. It is constructed on the 

BERT architecture, which is pre-trained on a large corpus of 

general text data. 

2.2 Roberta base and large 

We assessed the RoBERTa transformer model (Liu et al., 

2019)[4] in both of its base and large versions for our evaluation. 

Employing the pre-trained Roberta model, a study carried out a 

comprehensive investigation to categorize English tweets 

discussing COVID-19 vaccination. The central goal was to 

differentiate between tweets that mentioned one or more ADE and 

those with no ADE [5] and evaluated as the best model for 

classification and showed a good performance. 

2.3 GPT 3.5 and GPT 4.0 

A remarkable capability in both general and health domains, 

large language models (LLMs) like GPT-3.5 and GPT-4.0 are 

capable of processing image and text inputs to generate text 

outputs. They have impressed researchers with their impressive 

zero-shot and few-shot abilities, as evidenced in recent studies 

(OpenAI, 2023; Bubeck et al., 2023) [6,7], and have also been 

proven in health-related contexts. (Nori et al., 2023) [8]. 

Significant, Gu et al., conducted a case study on the extraction of 

adverse drug events (ADE), which is an important domain for 

enhancing healthcare [9] and this model achieved comparable 

accurateness as administered state-of-the-art models without the 

need for labeled data. 

2.4 Prompt Engineering for LLMs 

Prompt Engineering is increasingly recognized for its crucial 

role in ensuring effective communication with Large Language 

Models (LLMs). A "prompt" serves as a specific command to 

LLMs, aiming to enforce particular rules, automate processes, and 

maintain the quality and scope of outputs. In essence, prompts can 

be viewed as a programming approach, allowing users to tailor 

their interactions and desired results with LLMs. The significance 

of efficient prompt design in LLMs is widely acknowledged in 

academia [10,11] Past studies have delved into the precise effects 

of prompts on AI generative models. For instance, Wang, et 

al.[12] assessed the efficiency of prompts in literature searches, 

and in a more specialized domain, Xia and Zhang 

[13]concentrated on software prompt design and its role in error 

correction. 

3 PROPOSED METHODS 

In this section, we will first introduce the PLMs used to 

compare this work in Section 3.1.1, and Section 3.1.2 presents 

tokenization, Section 3.1.3 is the prompt engineer for GPT. 

3.1.1 Finetuned Pretrained Language Models (PLMs) 

The application of PLMs like BERT transformers-based large-

scale language models has witnessed remarkable achievements 

across various domains in the field of NLP as well as in the 

domain specific[14]. Additionally, recent research revealed a 

significant and increasing interest in large language models, 

primarily focused on NLP applications[15]. 

In this task, we adopted 3 different types of PLM models: 
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Table 4 Subtask 1-SM-ADE-EN Binary and Per Label 

Performance Metrics 

Models Score 

Precision Recall F1 Score 

ADE 
NO 

ADE 
ADE 

NO 

ADE 
ADE 

NO 

ADE 

BioBERT-

Base 

Binary 0.74 0.91 0.78 0.89 0.76 0.90 

Per 

label 
0.72 1.00 0.76 0.99 0.74 0.99 

Roberta-

Large 

Binary 0.73 0.93 0.83 0.88 0.78 0.90 

Per 

label 
0.71 1.00 0.77 0.99 0.74 0.99 

GPT3.5 

Binary 0.47 0.47 0.20 0.91 0.28 0.82 

Per 

label 
0.42 0.98 0.18 1.00 0.25 0.99 

 

 
Figure 1 Prompt used for GPT3.5 and 4.0 

You are a medical expert analyzing tweets to check whether the user suffers
adverse drug events.
**Your annotating steps are as follows: **
1. Check whether the user lists the adverse drug effects rather than expressing
personal experiences of adverse reactions.
2. Check whether this tweet's user suffers from adverse drug events.
3. Check the symptoms in these 22 symptoms listed below.
**Your annotation should be in the following format:**
1. If the user suffers from the tweet's symptom instead of listing the adverse drug
events, output with the corresponding label.
2. If the user doesn't suffer from the symptom in the tweet, output with \"None\".
**Symptom Labels**:
nausea, diarrhea, fatigue, vomiting, loss of appetite, headache, fever, interstitial
lung disease, liver damage, dizziness, pain, alopecia, analgesic asthma
syndrome, renal impairment, hypersensitivity, insomnia, constipation, bone
marrow dysfunction, abdominal pain, hemorrhagic cystitis, rash, stomatitis
**Here is some annotate example for you to base on.**
Text: I finished C due to side effects of the contrast dye. I was feeling kind of
sick and nausea was getting worse, so I thought it would be tough, but this
morning my chest hurts... I'm going to go to the hospital tomorrow, though I'm
anxious because I have 2 hours left until the test results...
Label: nausea, pain
Text: Why do I feel so dizzy after taking an antibiotic called minocycline!!!! I
have to take it again tomorrow, but what if I don't take it?
Label: dizziness
Text: <user_name> Ah, I knew it, you have aspirin asthma! I also coughed and
threw up when I took Loxonin. I also had difficulty breathing just because my
throat was swollen (sweat).
Label: vomiting
Text: Day 2 of cisplatin administration. The side effect of nausea has subsided,
but the diarrhea and loss of appetite was so bad that I've been eating all
yesterday and now this morning I'm having an upset stomach again...
```Other 15 samples for GPT to know.```

Table 3 Exact Accuracy of Test Dataset and Development 

Dataset  

Models 
Development 

Dataset (#1,192) 

Test Dataset 

(#1,993) 

BioBERT-Base 

(Submission Run 1) 
0.92 0.82 

Roberta-Base 0.76 - 

Roberta-Large 

(Submission Run 2) 
0.85 0.81 

GPT3.5 

(Submission Run 3) 
0.72 0.69 

GPT 4.0 0.62 - 

 

BioBERT[2,3], Roberta-large, and GPT 3.5 (Table 1). Their 

model structure is the same as BERT, but the differences are that 

a pre-trained model undergoes initial training to learn general 

language features, while a large language model is characterized 

by its substantial parameter count. 

We treat the ADE task as text classification, aiming to predict 

whether each text corresponds to an ADE. We focus on to identify 

the two categories: "NO ADE" (0) or "ADE" (1). Our approach 

involves fine-tuning a pre-trained model using ADE-related data 

from tweets containing ADE information. This fine-tuning helps 

the model better distinguish ADE-related text. A list of each ADE 

entity (case number, case report text, and ADE entity label) was 

established as training data. The development dataset is 7,964 

records. The training data were 90 % case, 10% cases were 

utilized for data validation. The hyperparameters of the models 

were max epochs 10, learning rate 1e-5, max length 128, batch 

size 32, and optimizer Adam. (Table 2) 

3.1.2 Tokenization 

We used a tokenizer to convert text to numerical inputs with a 

maximum length of 512 tokens and applied truncation and 

padding to ensure uniformity. This preprocessing step is used to 

bridge the gap between raw text and machine learning models. 

For prediction, the logits (raw model outputs) are passed through 

the sigmoid function to calculate the predicted probabilities 

(‘batch probs’) for each class. This is done using the sigmoid 

function from PyTorch's (‘nn. functional’) module. 

3.1.3 Prompt Engineer for Large Language Models 

(LLMs) 

We used a one-shot prompt approach to guide both GPT-3.5 

and GPT-4.0 regarding the definition and expected results from 

each dataset. Below is the prompt given to GPT. (Refer to Figure 

1) Upon comparing the accuracy of the development dataset for 

GPT-3.5 and GPT-4.0, it's evident that GPT-3.5 performs better 

under the same prompt in Table 3. Therefore, we chose GPT-3.5 

for our submissions. 

4 EXPERIMENTAL RESULTS 

4.1 Experiment Structure  

For the evaluation on the MedNLP SM-ADE-EN test dataset, 

we presented three distinct runs for comparative analysis. 

However, during our developmental phase, we assessed five 

different models to determine the most suitable for our final 

submission. 

Figure 2 shows the experiment structure of this study by using 

the development dataset. We split the development data into three 

parts, 70% (5,580) for training, 15% (1,192) for validation. 15% 

(1,192) for testing. The foundation of our pre-training model is the 

BERT-based transformer. The variations among these models are 

primarily attributed to their structures and hyperparameters. 

Among the LLMs we evaluated, GPT 3.5 and GPT 4.0 were our 

selections. Below is a detailed description of the five models 

considered in our research: 
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Figure 2 Experiment Structure of MedNLP SM-ADE-EN Task 

 

MedNLP-SC-

SM-EN

Development 

Dataset

Pre-trained 

Language Models

Large Language 

Models

Fine-tuning 

Techniques

1-shot Prompt 

Engineer

Evaluation Metrics

RoBERTa-base

RoBERTa-large

BioBERT-base

GPT-3.5

GPT-4.0

Accuracy

Precision 

Recall 

F1 Score

Best Performance 

Models

BioBERT-base

RoBERTa-large

GPT-3.5

Table 5 Subtask1-SM-ADE-EN Per label (Individual) Submitted Per Label Score 

Symptoms 
Precision Recall F1 Score 

BioBERT Roberta-L GPT3.5 BioBERT Roberta-L GPT3.5 BioBERT Roberta-L GPT3.5 

Diarrhea 0.75 0.73 0.64 0.83 0.84 0.17 0.79 0.78 0.27 

Fatigue 0.76 0.73 0.64 0.89 0.93 0.16 0.82 0.82 0.26 

Vomiting 0.83 0.84 0.57 0.86 0.73 0.18 0.84 0.78 0.28 

Appetite 0.75 0.69 0.50 0.87 0.96 0.15 0.80 0.81 0.24 

Headache 0.77 0.77 0.87 0.95 0.96 0.23 0.85 0.86 0.36 

Fever 0.63 0.61 0.40 0.58 0.47 0.23 0.61 0.53 0.29 

Interstitial lung 

disease 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Liver damage 0.00 0.00 0.17 0.00 0.00 1.00 0.00 0.00 0.29 

Dizziness 0.53 0.50 0.67 0.69 0.62 0.31 0.60 0.55 0.42 

Pain 0.53 0.67 0.15 0.44 0.54 0.15 0.48 0.60 0.15 

Alopecia 0.70 0.67 0.38 0.88 0.75 0.38 0.78 0.71 0.38 

Analgesic asthma 

syndrome 
0.81 0.94 1.00 0.94 0.94 0.17 0.87 0.94 0.29 

Renal impairment 0.83 1.00 0.00 1.00 0.40 0.00 0.91 0.57 0.00 

Hypersensitivity 0.76 0.68 0.38 0.68 0.61 0.11 0.72 0.64 0.17 

Insomnia 0.84 0.55 0.60 0.47 0.18 0.18 0.60 0.27 0.27 

Constipation 0.74 0.66 0.56 0.84 0.87 0.16 0.79 0.75 0.25 

Bone marrow 

dysfunction 
0.33 0.00 0.14 0.50 0.00 0.50 0.40 0.00 0.22 

Abdominal pain 0.72 0.64 0.54 0.75 0.86 0.23 0.73 0.74 0.32 

Hemorrhagic 

cystitis 
0.67 0.00 0.50 0.50 0.00 0.25 0.57 0.00 0.33 

Rash 0.75 0.69 0.14 0.64 0.61 0.09 0.69 0.65 0.11 

Stomatitis 0.67 0.62 0.38 0.64 0.68 0.14 0.65 0.65 0.20 

 

1) BioBERT-Base: This model did not employ prompt 
learning and was designed with 22 labels complemented 
by corresponding text sentences. 

2) Roberta-Base: This model was fine-tuned with specific 
hyperparameters tailored to cater to the multi-label text 
classification task. 

3)  Roberta-Large: Similar to Roberta-Based, this model 
was adapted with fine-tuned hyperparameters suitable 
for the multi-label text classification objective. 

4) GPT3.5: With the application of prompt engineering 
combined with one-shot learning, this model utilized 
LLM to detect ADEs. 

5) GPT4.0: Employing strategies akin to GPT3.5, this 
model also leveraged prompt engineering and one-shot 
learning, harnessing the capabilities of LLM to pinpoint 
ADEs. 

4.2 Submitted Runs 

In our experiment, we designated Roberta-Base as the 

baseline model. We then conducted evaluations on the 

development dataset using five distinct models: BioBERT-Base, 

Roberta-Large, Roberta-Base, GPT3.5, and GPT 4.0. The exact 

accuracies for both the Test and Development Datasets are 

presented in Table 3.  

From Table 3, it's evident that BioBERT-Base achieved the 

highest accuracy on the development dataset with a score of 0.92 

and maintained commendable performance on the test dataset 

with an accuracy of 0.82. This makes it the top performer among 

the models evaluated for Subtask1-SM-EN. On the other hand, 

Roberta-Base, which served as our baseline, showed a marginal 

improvement from the development dataset (0.76) to the Test 

Dataset (0.81). 

We chose to submit the results from three models: Roberta-

Large, BioBERT-Base, and GPT3.5. This decision was made by 

the comparative performance, as the remaining two models, 

particularly GPT 4.0, lagged in terms of accuracy on the 

development dataset. 

For a comprehensive evaluation, Table 4 presents the 

performance metrics on the test dataset, while Table 5 emphasizes 

individual model performance across different classes. 

4.3 Error Analysis 

Table 6 shows the detail binary and per label performance 

metrics in development dataset. Following session is the error 

analysis of different evaluation metrics. 

A. Precision Analysis 
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Table 6 Subtask 1-SM-ADE-EN Binary and Per Label Performance 

Metrics in Development Dataset 

Models Score 

Precision Recall F1 Score 

ADE 
NO 

ADE 
ADE 

NO 

ADE 
ADE 

NO 

ADE 

BioBERT-

Base 

Binary 0.90 0.97 0.93 0.96 0.92 0.97 

Per label 0.91 0.97 0.93 0.96 0.92 0.97 

Roberta-

Base 

Binary 0.89 0.83 0.59 0.97 0.71 0.90 

Per label 0.85 0.99 0.49 1.00 0.62 0.99 

Roberta-

Large 

Binary 0.87 0.93 0.85 0.94 0.86 0.93 

Per label 0.84 0.99 0.77 1.00 0.81 1.00 

GPT3.5 
Binary 0.72 0.80 0.53 0.90 0.61 0.85 

Per label 0.62 0.99 0.57 0.99 0.60 0.99 

GPT4.0 
Binary 0.52 0.96 0.95 0.61 0.67 0.75 

Per label 0.48 1.00 0.92 0.98 0.63 0.99 

 

 
Figure 3 Precision of ADE in Development Dataset of MedNLP 

SM-ADE-EN Task 

 

 
Figure 3 Recall of ADE in Development Dataset of MedNLP 

SM-ADE-EN Task 

 

 
Figure 5 F1 Score for ADE in Development Dataset of 

MedNLP SM-ADE-EN Task 

 

1) ADE Precision 

BioBERT-Base exhibits the highest precision in detecting 

ADEs for both binary and per-label scores, closely followed by 

Roberta-Large. However, GPT4.0 has the lowest precision for 

ADE detection, indicating a higher number of false positives. 

(Refer to Figure 3) 

2) NO ADE Precision 

GPT4.0 and Roberta-Base in the per-label score, as well as 

Roberta-Large, demonstrate almost perfect precision. But 

Roberta-Base in the binary score exhibits the lowest precision in 

detecting NO ADEs. 

B. Recall Analysis 

1) ADE Recall 

GPT4.0 has the highest recall for detecting ADEs, especially 

in the binary score, implying that it correctly identifies most of the 

ADE instances. Roberta-Base, in its per-label score, exhibits the 

lowest recall, suggesting it misses a significant number of actual 

ADE instances. (Refer to Figure 3) 

2) NO ADE Recall 

Roberta-Base and Roberta-Large, in their per-label scores, 

and GPT4.0 in its per-label score, show near-perfect recall for NO 

ADE detection. GPT4.0 in its binary score has the lowest recall 

for NO ADEs. 

C. F1 Score Analysis 

1) ADE F1 Score 

BioBERT-Base and Roberta-Large showcase the highest F1 

scores, indicating a balanced performance between precision and 

recall. GPT4.0's per-label score is the lowest, indicating a 

disparity between precision and recall for ADE detection. (Refer 

to Figure 5) 

2) NO ADE F1 Score 

BioBERT-Base and Roberta-Large showcase the highest F1 

scores, indicating a balanced performance between precision and 

recall. GPT4.0's per-label score is the lowest, indicating a 

disparity between precision and recall for ADE detection. 

To sum up the error analysis, choosing the best model 

depends on the specific requirements of an application. If 

avoiding false negatives (missing actual ADE instances) is 

crucial, a model like GPT4.0 with high recall might be preferred. 

For balanced performance, BioBERT-Base stands out. 
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Table 7 Exact Match Accuracy Results of Multi-label in 

MedNLP SM-ADE-EN Development Dataset  

Models Development Dataset 

RoBERTa-Base 0.86 

RoBERTa-Large 0.87 

BioBERT-Base 0.85 

BioBERT-Large 0.86 

GPT3.5-1-shot 0.54 

GPT3.5-scenario 0.69 

GPT4.0-1-shot 0.61 

GPT4.0-scenario 0.70 

GPT3.5-fintune 0.85 

 

5 FURTHER EXPERIMENTS 

After our initial submissions, we carried out a more detailed 

analysis on the MedNLP SM-ADE-EN Development Dataset. The 

preliminary results in Table 7, utilizing a 5-fold cross-validation 

coupled with a majority voting ensemble on the original 

development dataset, were not as promising as we had hoped for 

the PLMs. 

To enhance our model's performance, we opted for data 

augmentation using GPT-3.5. This strategic decision expanded 

our training dataset from 7,167 entries to 8,959. As a result, the 

exact accuracy of RoBERTa-Base witnessed a significant 

improvement, moving from 0.76 to 0.86. 

In the context of the dataset, which primarily consists of 

succinct tweets, we refined our prompts to offer a more explicit 

context to the GPT models. Our detailed error analysis hinted at 

an intriguing observation: models like GPT4.0, which inherently 

have a high recall, might be more suitable for this task. Given the 

concise nature of tweets, there's a plausible risk of ambiguity, 

which could mislead the LLMs. To counteract this, we crafted our 

prompts to emphasize the specific scenario of the dataset. This 

tailored approach played a pivotal role in enhancing the accuracy 

of GPT4.0 from 0.61 to 0.70. 

Drawing from these results, we can infer that the combined 

efforts of data augmentation and 5-fold cross-validation provided 

us with models that outperformed the GPT variants in terms of 

exact accuracy. Interestingly, the GPT3.5 model, after fine-tuning, 

showcased commendable performance, registering an exact 

accuracy score close to the PLMs. This underscores the potential 

of GPT models in multi-label text classification tasks, especially 

when optimized with fine-tuning. 

6 CONCLUSIONS 

In our research for the NTCIR 17 RealMedNLP task, our 

team, IMNTPU, focused on two primary tasks: Adverse Drug 

Events (ADE) extraction and identifying radiology reports from 

the same patient (CI). For the ADE extraction, we deployed five 

diverse models to discern their efficacy in this specific domain. 

Our comparative analysis revealed that BioBERT-Base stands out, 

exhibiting robust performance in contrast to its counterparts. 

Our exploration brought forth a noteworthy contribution by 

delving into one-shot learning within the realm of multiclass 

labeling, utilizing the GPT framework. While the potential of one-

shot learning is immense, our findings indicated it might not be 

the most optimal choice for scenarios where an input can be 

linked to multiple labels. As a future trajectory, researchers might 

consider more tailored strategies for multiclass labeling, such as 

refining the GPT model or integrating specialized deep learning 

structures designed for multilabel outputs. Such endeavors could 

not only elevate the model's efficiency but also offer solutions to 

computational intricacies often associated with using GPT for 

multiclass labeling tasks. 
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