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Abstract
We propose an innovative approach for multi-specialty retrieval
in question answering systems by integrating diverse similarity
measures through ensemble learning. Traditional machine reading
comprehension methods struggle to accurately capture specialty-
specific terminology and semantic nuances due to their reliance on
generic models. Our framework addresses this challenge by lever-
aging multiple pre-trained embedding models tailored specifically
for Chinese, English, and financial texts, combined with various
similarity metrics, including cosine similarity, modified Euclidean
similarity, and modified Manhattan similarity. The core novelty of
our framework lies in effectively combining these domain-specific
embeddings and diverse similarity metrics through both unsuper-
vised and supervised ensemble strategies, enabling robust relevance
prediction across heterogeneous contexts. Extensive experiments
on domain-specific and challenging cross-specialty datasets demon-
strate significant improvements in accuracy, F1-score, and precision
compared to single-embedding and single metric-metric baselines.

Keywords
MRC (Machine Reading Comprehension), RAC (Retrieval Aug-
mented Classification), Multi-Specialty Retrieval

1 Introduction
Recent advances in deep learning and large language models (LLMs)
have significantly enhanced question-answering (QA) systems. Tra-
ditional Machine Reading Comprehension(MRC)[1] methods often
depend on arge, parameter-intensive models, yet they frequently
struggle to capture nuanced semantic information unique to spe-
cialized fields such as finance, healthcare, and multilingual con-
tent. Retrieval-Augmented Generation (RAG)[2] has emerged as
an effective alternative by supplementing generative models with
externally retrieved information, thereby enhancing accuracy and
comprehensiveness.

Despite these advancements, designing an efficient retrieval mod-
ule for multi-specialty applications remains challenging. Each spe-
cialty possesses distinct terminologies, stylistic conventions, and
data distributions, causing embedding models optimized for one
specialty to sub-optimized when applied to another. Each specialty-
specific embedding model inherently exhibits unique strengths
and weaknesses, making it difficult to select a universally optimal
solution.

To overcome these limitations, we propose an ensemble-based
approach that strategically integrates multiple domain-specific em-
bedding models with diverse similarity metrics—cosine similarity,
modified Euclidean similarity, and modified Manhattan similarity.

By combining these embeddings and metrics through both unsuper-
vised and supervised ensemble techniques, our approach effectively
leverages their complementary strengths, enhancing retrieval ro-
bustness even under resource-constrained scenarios.

2 Related Work
2.1 DIEM
Federico Tessari et al. [3] investigate the limitations of commonly
used similarity metrics—namely, cosine similarity, Euclidean dis-
tance, and Manhattan distance—in high-dimensional spaces. Their
analysis highlights that both Euclidean and Manhattan distances
can suffer from deviations and instability due to the curse of dimen-
sionality, which may negatively impact the accuracy of similarity
computations. However, our preliminary experiments have shown
that these metrics still hold promise in capturing diverse geometric
properties within the embedding space. As a result, we include
them in our experimental framework to better address semantic
variations across multiple domains.

2.2 BGE M3-Embedding
The M3-Embedding framework, presented in [4], excels in multilin-
gual, multifunctional, and multigranularity retrieval tasks. Using
self-knowledge distillation, the approach demonstrates exceptional
adaptability and robustness in diverse domains. The method ef-
fectively integrates semantic information from various sources,
yielding improved performance in cross-domain retrieval tasks.
Inspired by this work, our study adopts a multi-domain design that
utilizes domain-specific embedding models along with multiple sim-
ilarity metrics, aiming to improve performance in heterogeneous
environments.

2.3 Multi-domain learning to rank
Maintainingmultiple domain-specific information retrieval is costly.
Deep domain adaptation (DDA) techniques address this by learning
domain-invariant representations for knowledge transfer, but they
may degrade performance in domain-specific tasks due to the loss
of specialized features. Recent research [5] present Deep Domain
Specialization (DDS), which consolidates multiple domains into
a single ranking model while preserving domain-specific feature
representations as a solution. By retaining specialized knowledge
for each domain, DDS achieves superior performance without sac-
rificing domain effectiveness.

3 Dataset
This section outlines the datasets used for both training and testing,
including Chinese, English, and financial question-responses.
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3.1 Training Data
To capture specialty-specific characteristics across Chinese, English,
and financial texts, we aggregated several publicly available QA
datasets into a unified corpus. This unified approach allows our re-
trieval classification models to learn from diverse specialty-specific
contexts. The following datasets were used for training.

3.1.1 Chinese specialty Question Answering Dataset. We employ
three Chinese QA datasets to enhance our model’s performance in
Chinese comprehension:
• DuReader[6]: An open-domain machine reading comprehen-

sion dataset from Baidu, featuring real-world user queries and
corresponding passages.

• ChineseSquad1: A Chinese adaptation of the original SQuAD
dataset, generated via machine translation and manually re-
fined to ensure high quality.

• WebQA[7]: A large-scale human-annotated dataset developed
by Baidu based on web contexts.

For each dataset, we randomly selected a subset of QA pairs (as
detailed in Table 1), resulting in a total of 10,000 pairs for the Chinese
specialty.

3.1.2 EnglishQuestion Answering Datasets. To improve our English
comprehension capabilities, we integrate three English QA datasets:
• SearchQA2: This is a split derived from the MRQA 2019

dataset[8], a task focused on generalization in question an-
swering, which has been reformatted and filtered specifically
for question answering.

• Disfl_qa[9]: A dataset focused on contextual disfluencies in
information-seeking scenarios from Google. We only utilize
it’s context and question-answering pairs.

• Duorc[10]: A dataset, composite by IBM, containing questions
and answers collected from crowdsourced AMTworkers based
on Wikipedia and IMDB movie plots.

A random selection of QA pairs from each dataset (refer to Table 1)
yields a total of 10,000 pairs for the English specialty.

3.1.3 Financial Question Answering Datasets. We also include two
financial QA datasets to boost the model’s capability in financial
comprehension:
• Finqa[11]: A dataset designed for complex numerical reason-

ing over financial documents.
• Sujet-Finance-QA-Vision-100k3: A collection of financial

document images with corresponding textual annotations and
AI-generated QA pairs.

From these datasets, we randomly selected QA pairs (as shown in
Table 1) to form a total of 10,000 pairs for the financial specialty.

3.1.4 Data Preprocessing. To comprehensively cover the Chinese,
financial, and English specialties, we aggregated eight publicly
available QA datasets. Each dataset contributes a specified number
of correct QA pairs, selected from its total pool of correct and
incorrect pairs. Incorrect pairs were generated by pairing each
query with a mismatched context from the same dataset, ensuring a

1https://github.com/pluto-junzeng/ChineseSquad
2https://huggingface.co/datasets/lucadiliello/searchqa
3https://huggingface.co/datasets/sujet-ai/Sujet-Finance-QA-Vision-100k

Table 1: Overview of the training datasets used in this study.

Source Dataset Specialty Selected QA Pairs

DuReader Chinese 6666
ChineseSquad Chinese 6666
WebQA Chinese 6668
Finqa Financial 10000
Sujet-Finance-QA-Vision-100k Financial 10000
SearchQA English 6666
Disfl_qa English 6666
Duorc English 6668

Table 2: Overview of the testing datasets used in this study.

Source Dataset Specialty QA Pairs Quantity

DRCD Chinese 67906
NQ English 15660
Financial-QA-10K Financial 14000
BiPaR Chinese&English 29336
AICUP2024 Chinese&Finance 2570

balanced distribution for the binary classification task. In total, the
training corpus comprises 30,000 QA pairs (10,000 per specialty).

3.2 Testing Data
The testing set consists of five datasets (as shown in Table 2), each
targeting different specialties and evaluation aspects:

3.2.1 DRCD (Delta Reading Comprehension Dataset)[12]. DRCD is
a traditional Chinesemachine reading comprehension dataset devel-
oped by Delta Electronics. Pair Chinese texts with the correspond-
ing questions and answers, providing a challenging evaluation of
the retrieval and quality control capabilities of the system.

3.2.2 Natural Questions[13]. Natural Questions (NQ) is a large-
scale QA dataset. It includes real user queries from the Google
search and corresponding answers extracted from Wikipedia pas-
sages, representing the English specialty.

3.2.3 Financial-QA-10K. Financial-QA-10K4 comprises 10,000 QA
pairs extracted from company financial reports. Covering topics
such as financial analysis, company operations, and strategic in-
sights, this dataset serves as a benchmark to evaluate the retrieval
module in a specialty with specialized terminology and numerical
reasoning.

3.2.4 BiPaR[14]. BiPaR is a manually annotated bilingual dataset
originally developed for novel-style reading comprehension. In this
study, we exclusively use its monolingual English subset, directly
translated from Chinese, to evaluate how "Chinese-style" elements
influence English contexts.

3.2.5 AICUP 2024 Dataset. AICUP5 is a series of AI competitions
in Taiwan challenging participants to develop machine learning

4https://www.kaggle.com/datasets/yousefsaeedian/financial-q-and-a-10k
5https://www.aicup.tw
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solutions for real-world tasks. This dataset comes from one of the
2024 competition organized by E.SUN Bank, which focuses on
applying RAG to financial question answering in Chinese based
financial dataset.

4 Experiment
4.1 Similarity Method
In our experiments, we adopt three widely-used vector similarity
and distance measures: cosine similarity, Euclidean distance, and
Manhattan distance. Each method captures different aspects of
vector relationships. However, while cosine similarity naturally
yields a score in a bounded range (typically interpreted as 0 to
1), both Euclidean and Manhattan distances produce unbounded
values in the range [0,∞). To facilitate a uniform comparison across
all methods and to integrate them seamlessly into our downstream
tasks, we transform the distance-based measures into normalized
similarity scores using an exponential decay function.

Cosine Similarity: Cosine similarity evaluates the cosine of the
angle between two vectors a and b:

a · b
∥a∥∥b∥ + 10−10

(1)

where a small constant 10−10 is added to avoid division by zero.
This metric inherently reflects the directional alignment between
vectors.

Modified Euclidean Similarity: The conventional Euclidean
distance, ∥a − b∥, outputs values from 0 to infinity, with lower val-
ues indicating higher similarity. To map this distance to a similarity
score between 0 and 1, we apply an exponential decay transforma-
tion:

𝑒−0.1∥a−b∥ (2)

This modification is motivated by several considerations:
• Normalization: The exponential function compresses the

unbounded Euclidean distance into a bounded similarity score,
making it directly comparable to cosine similarity.

• Monotonic Decay: The function decreases monotonically as
the distance increases, ensuring that smaller distances corre-
spond to higher similarity scores.

• Sensitivity Control: The decay factor (0.1) in our exponential
decay function was empirically selected through preliminary
experiments, regulating how quickly similarity decreases with
increasing distance. This parameter effectively controls the
sensitivity and ensures meaningful similarity interpretations
across embedding spaces. While our empirical choice balances
performance and interpretability effectively, future work could
explore alternative normalization strategies such as inverse
distance or softmax transformations, providing a deeper theo-
retical grounding and potential further performance improve-
ments.

Modified Manhattan Similarity: Similarly, the Manhattan
distance, given by

∑ |a − b|, is unbounded. We convert it to a
similarity score in the [0, 1] range using a comparable exponential
decay function, identical to Modified Euclidean Similarity:

𝑒−0.1
∑ |a−b | (3)

The reasons for this modification are analogous to those for the
Euclidean case.
In general, by converting the Euclidean and Manhattan distances
into normalized similarity scores, we establish a consistent frame-
work to compare vector similarities in different methods.

4.2 Embedding Models
We employ three pre-trained embedding models, each tailored for
a specific specialty, to generate robust vector representations for
our retrieval tasks.

Yuan-embedding-1.0 (Chinese Specialty)6: This model is
specifically designed for Chinese context retrieval tasks and is
available on Hugging Face. Although there is no dedicated paper for
embedding, the underlying data is derived from the work presented
by Inspur. In particular, Yuan-embedding-1.0 has demonstrated
leading accuracy in the retrieval task of the legacy (before February
2025) MTEB benchmark, making it a strong choice for Chinese
language applications.

all-MiniLM-L6-v2 (English Specialty)7: Developed by the
sentence-transformers team and accessible through Hugging Face,
the all-MiniLM-L6-v2 model is renowned for its high performance
and compact model size. Given its robust representation capabil-
ities and efficiency, we have selected this model as our primary
embedding method for the English specialty.

finance-embeddings-investopedia (Finance Specialty)8: Th-
is embedding model, provided by FINLANG TRANSLATION SER-
VICES LIMITED, is fine-tuned on BAAI/bge-base-en v1.5. It is partic-
ularly well-suited for tasks such as clustering and semantic search in
Retrieval Augmented Generation (RAG) applications. Its selection
is motivated by its high download count in the relevant specialty
and its strong performance with a reasonable parameter size, as
observed in our preliminary tests.

4.3 Baseline 1: Embedding-Based Similarity
Computation

In our first baseline experiment, we employed a single pre-trained
embedding model to transform both context and query sentences
into fixed-dimensional vector representations. Among various sim-
ilarity metrics, Cosine Similarity was selected due to its wide-
spread application in embedding-based retrieval tasks. For each con-
text–query pair, a uniform threshold of 0.7 was applied, categorizing
pairs as relevant if their similarity scores exceeded this threshold
and as irrelevant otherwise. We evaluated the performance of this
approach across multiple datasets from diverse specialties, using
Accuracy, F1-score, and Precision as primary evaluation metrics.
Detailed results obtained using Cosine Similarity are presented in
Table 3.

4.4 Baseline 2: Multi-Embedding Similarity
Ensemble via Averaging

To further explore the potential of embedding-based similarity, we
extend our approach by leveraging multiple pre-trained embedding
models. For each model, we extract the same three similarity scores
6https://huggingface.co/IEITYuan/Yuan-embedding-1.0
7https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
8https://huggingface.co/FinLang/finance-embeddings-investopedia

Proceedings of FinTech in AI CUP Special Session, June 10, 2025, Tokyo, Japan

10

https://huggingface.co/IEITYuan/Yuan-embedding-1.0
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/FinLang/finance-embeddings-investopedia


Table 3: Baseline 1 Performance

Specialty Datasets
Cosine Similarity Performance

Accuracy F1-score Precision

Chinese DRCD 0.9333 0.9357 0.9033
Chinese financial-qa-10K 0.6159 0.7223 0.5656
Chinese NQ 0.8626 0.8785 0.7874
Chinese BiPaR 0.5683 0.6959 0.5372
Chinese AICUP2024 0.5821 0.7027 0.5453

English DRCD 0.5094 0.0372 0.9923
English financial-qa-10K 0.8493 0.8228 0.9980
English NQ 0.6126 0.3676 1.0000
English BiPaR 0.5062 0.0246 0.9946
English AICUP2024 0.5128 0.1448 0.5922

Finance DRCD 0.5630 0.2352 0.9408
Finance financial-qa-10K 0.8739 0.8560 0.9977
Finance NQ 0.5430 0.1585 1.0000
Finance BiPaR 0.5026 0.0103 1.0000
Finance AICUP2024 0.5198 0.3830 0.5357

as in Baseline 1. We then aggregate these scores by computing
their arithmetic mean. Specifically, we investigate the following
ensemble configurations:

• c: Cosine similarity only.
• e: Modified Euclidean similarity only.
• m: Modified Manhattan similarity only.
• c,e,m: Mean of all three similarity scores.

A fixed threshold of 0.7 is applied to the aggregated score for rele-
vance determination. Table 4 summarizes the performance of these
ensemble configurations across various datasets.

In certain datasets, the m and c,e,m configurations exhibit an
F1-score and precision of 0, coupled with an accuracy of 0.5. This
pattern arises possibly due to the threshold-based classification
mechanism employed. Because normalized Manhattan similarity
scores (m) or their arithmetic mean with other metrics (c,e,m) sel-
dom exceed the fixed threshold of 0.7, the classifier effectively labels
all pairs as negative. In a balanced dataset with an equal number of
positive and negative samples, always predicting the negative class
leads to an accuracy of 0.5 (random guessing), while resulting in
zero precision and recall for the positive class. Hence, the inherent
low range of these similarity scores under the chosen threshold com-
pels the model to make uniform (all-negative) predictions, yielding
the observed metrics.

4.5 K-Means Clustering for Unsupervised
Integration

Inspired by previous research[15], which found that while the Eu-
clidean distance is effective in k-means clustering, its performance
deteriorates in high-dimensional spaces, whereas cosine similarity
remains robust, we propose an unsupervised integration strategy
using k-means clustering. In our approach, we compute three simi-
larity scores (cosine, modified Euclidean, and modified Manhattan)

Table 4: Baseline 2 Performance for Different Ensemble Com-
binations

Source Dataset Union Accuracy F1-score Precision

DRCD

c 0.5581 0.2083 0.9992
e 0.5216 0.0829 1.0000
m 0.5000 0.0000 0.0000
c,e,m 0.5000 0.0001 1.0000

financial-qa-10K

c 0.9329 0.9282 0.9972
e 0.7581 0.6812 1.0000
m 0.5001 0.0003 1.0000
c,e,m 0.5001 0.0006 1.0000

NQ

c 0.6677 0.5023 1.0000
e 0.5404 0.1496 1.0000
m 0.5000 0.0000 0.0000
c,e,m 0.5000 0.0000 0.0000

BiPaR

c 0.5107 0.0418 0.9968
e 0.5001 0.0004 1.0000
m 0.5000 0.0000 0.0000
c,e,m 0.5000 0.0000 0.0000

AICUP2024

c 0.5767 0.4499 0.6421
e 0.5595 0.2215 0.9527
m 0.5000 0.0000 0.0000
c,e,m 0.5000 0.0000 0.0000

from each embedding model for every context–query pair and con-
catenate them into a single feature vector. We perform k-means
clustering with 𝑘 = 2 to partition the pairs into two clusters, corre-
sponding to relevant and irrelevant relationships, with the cluster
exhibiting higher average similarity values designated as relevant.
New context–query pairs are assigned to the closest cluster based
on the Euclidean distance. Table 5 summarizes the performance
metrics of this approach across our datasets, demonstrating its ef-
fectiveness in uncovering latent similarity structures and serving
as a valuable alternative to averaging or supervised methods when
labeled data is limited.

4.6 Multi-Embedding Similarity Ensemble with
RandomForest

Building on the previous k-means approaches, we next incorporate
a supervised learning method using a RandomForest classifier to
fuse the similarity scores. For every context–query pair, the cosine,
modified Euclidean, and modified Manhattan similarities from each
embedding model are concatenated into a comprehensive feature
vector. The RandomForest classifier is configured with 100 trees, a
minimum samples split of 2, and a minimum samples leaf of 1. The
classifier is trained using these feature vectors to predict relevance.
A fixed threshold of 0.7 is applied to the output probability - pairs
with probabilities greater than this value are classified as relevant.
This method leverages the ensemble nature of RandomForest to
capture nonlinear interactions among the similarity features, which
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Table 5: Performance of the k-means-basedMulti-Embedding
Similarity Ensemble.

Source Dataset Union Accuracy F1-score Precision

DRCD

c 0.6227 0.7110 0.5762
e 0.8324 0.7988 0.9984
m 0.7213 0.6466 0.8831
c,e,m 0.6419 0.7201 0.5911

financial-qa-10K

c 0.9393 0.9427 0.8927
e 0.9303 0.9261 0.9848
m 0.9784 0.9782 0.9835
c,e,m 0.9444 0.9472 0.9011

NQ

c 0.9732 0.9726 0.9982
e 0.8397 0.8092 0.9997
m 0.8908 0.8774 0.9998
c,e,m 0.9711 0.9703 0.9984

BiPaR

c 0.7457 0.6887 0.8877
e 0.5545 0.1986 0.9876
m 0.6056 0.3562 0.9691
c,e,m 0.7411 0.6790 0.8934

AICUP2024

c 0.5642 0.6913 0.5352
e 0.6969 0.6895 0.7066
m 0.6000 0.6623 0.5731
c,e,m 0.5708 0.6944 0.5392

often yields improved performance over simple averaging. Perfor-
mance metrics for various embedding combinations are detailed in
Table 6.

4.7 Multi-Embedding Similarity Ensemble with
MLP

Finally, we investigate a neural network–based integration strategy
using a Multi-Layer Perceptron (MLP). As before, the similarity
scores extracted from multiple embedding models are concatenated
to form the input feature vector. The MLP architecture is structured
as follows:
• Input Layer: Accepts the concatenated similarity feature vec-

tor with 9 features.
• Hidden Layers: Three fully connected hidden layers with

64, 16, and 4 neurons, respectively, each followed by a ReLU
activation function.

• Dropout: No explicit dropout mechanism is applied in this
architecture.

• Output Layer: A single neuron with a sigmoid activation
function outputs the probability of relevance.

The network is trained using binary cross-entropy loss and op-
timized with the Adam optimizer. The batch size is set to 32, and
an L2 regularization term with 𝛼 = 0.0001 is applied to mitigate
overfitting. Consistent with the other methods, a threshold of 0.7 is
used to determine relevance. The MLP’s ability to learn complex
nonlinear interactions among the similarity features can lead to
more refined decision boundaries. Experimental results for various
embedding combinations are reported in Table 7.

Table 6: Performance of the RandomForest-based Multi-
Embedding Similarity Ensemble.

Source Dataset Union Accuracy F1-score Precision

DRCD

c 0.9074 0.8995 0.9834
e 0.9216 0.9185 0.9556
m 0.9228 0.9200 0.9552
c,e,m 0.9160 0.9094 0.9881

financial-qa-10K

c 0.9385 0.9415 0.8978
e 0.9419 0.9431 0.924
m 0.9416 0.9429 0.9222
c,e,m 0.9483 0.9503 0.9151

NQ

c 0.9550 0.9529 0.9988
e 0.9565 0.9546 0.9986
m 0.9554 0.9533 0.9986
c,e,m 0.9520 0.9497 0.9989

BiPaR

c 0.7429 0.6776 0.9079
e 0.7240 0.6429 0.9107
m 0.7258 0.6458 0.912
c,e,m 0.7389 0.6681 0.9166

AICUP2024

c 0.6556 0.7273 0.6021
e 0.6467 0.7223 0.5949
m 0.6490 0.7245 0.5963
c,e,m 0.6595 0.7304 0.6046

Table 7: Performance of the MLP-based Multi-Embedding
Similarity Ensemble.

Source Dataset Union Accuracy F1-score Precision

DRCD

c 0.8962 0.8849 0.9938
e 0.9353 0.9327 0.9729
m 0.6606 0.5187 0.8912
c,e,m 0.9301 0.9259 0.9849

financial-qa-10K

c 0.9537 0.9552 0.9245
e 0.9456 0.9471 0.9226
m 0.9590 0.9582 0.9782
c,e,m 0.9466 0.9490 0.9087

NQ

c 0.9463 0.9433 0.9999
e 0.9582 0.9565 0.9985
m 0.8997 0.8885 0.9996
c,e,m 0.9611 0.9596 0.999

BiPaR

c 0.7229 0.6348 0.9309
e 0.7238 0.6398 0.9194
m 0.6688 0.5226 0.9353
c,e,m 0.7470 0.6816 0.9186

AICUP2024

c 0.6650 0.7317 0.6102
e 0.6572 0.7298 0.6022
m 0.5977 0.6190 0.5878
c,e,m 0.6626 0.7327 0.6068

Proceedings of FinTech in AI CUP Special Session, June 10, 2025, Tokyo, Japan

12



5 Results
Our experiments compared the performance of single similarity
computationmethodswithmachine-learning-based ensemblemeth-
ods for retrieval across multiple specialties. The findings indicate
that while a baseline using cosine similarity achieves decent perfor-
mance on single-specialty datasets (such as DRCD, Financial-QA-
10K, and NQ), it falls short on cross-specialty datasets like BiPaR
and AICUP2024, where both accuracy and F1-scores are notably
lower. This suggests that relying on a single similarity measure
may be insufficient for capturing the nuanced semantic variations
present in heterogeneous datasets.

5.1 Ensemble Strategy Improvement
By integrating multiple similarity metrics—cosine, modified Eu-
clidean, and modified Manhattan—and applying supervised learn-
ing approaches (RandomForest and MLP) to fuse these features,
we observed significant performance gains. For instance, on the
Financial-QA-10K dataset, the baseline cosine similarity method
achieved an accuracy of approximately 87.4%, whereas the Random-
Forest ensemble improved accuracy to 94.8%, and the MLP-based
approach further boosted it to around 95.0%. Similar improvements
were observed in the DRCD and NQ datasets, where supervised
ensemble methods better captured the complementary information
offered by the different embedding models and similarity measures.

5.2 Challenges and Observations on
Cross-Specialty Datasets

The cross-specialty datasets, particularly BiPaR and AICUP2024,
pose unique challenges due to the inherent diversity in language
styles and specialty-specific terminology:

• BiPaRDataset: The baseline cosine similarity method yielded
accuracies in the range of 50–57%. However, when using an
MLP-based ensemble with multiple similarity metrics, accu-
racy increased to approximately 74.7%. This improvement un-
derscores the effectiveness of nonlinear feature integration
in addressing semantic inconsistencies across languages and
specialties.

• AICUP2024Dataset: This dataset also presents cross-specialty
challenges, combining elements of both Chinese and financial
contexts. Here, the baseline accuracy of about 58.2% (for the
Chinese specialty) improved to roughly 65.9% with the Ran-
domForest ensemble. Although the gains are less pronounced
than in single-specialty settings, the improvement highlights
the relative stability of ensemble methods when dealing with
complex, heterogeneous data.

It is noteworthy that the modified Manhattan similarity on its
own consistently performed poorly across experiments. However,
its inclusion in the ensemble—when combined with cosine and
modified Euclidean similarity—helped enhance the overall model’s
ability to discern subtle semantic differences, particularly in the
cross-specialty scenarios.

6 Interesting Phenomena and Future Directions
• Nonlinear Complementarity: The supervised ensemble

methods (both RandomForest and MLP) are capable of cap-
turing nonlinear interactions among the different similarity
metrics. This synergy is especially beneficial in cross-specialty
contexts, where semantic patterns are more diverse and com-
plex.

• Cross-Specialty Limitations: Despite the improvements,
the ensemble methods still show relatively lower performance
gains on cross-specialty datasets (BiPaR and AICUP2024) com-
pared to single-specialty datasets. This suggests that further
enhancements may be achieved by incorporating additional
specialty-specific embedding models or by developing more
adaptive fusion strategies.

• Selective Fusion Strategy: In some cases, a single metric (e.g.,
cosine similarity or modified Euclidean similarity) performed
comparably to or even slightly better than a naive fusion of
all three metrics. This observation indicates that in certain
scenarios, indiscriminate fusion might introduce noise, and a
more selective or weighted fusion approach could yield better
results.

In summary, our study demonstrates that combining multiple simi-
larity measures through supervised machine learning ensembles
can effectively boost retrieval performance, particularly in chal-
lenging cross-specialty environments. Future work will explore ad-
vanced fusion strategies and the integration of additional specialty-
specific features to further enhance model robustness and accuracy.

7 Conclusion
This study presented a comprehensive evaluation of embedding
models and similarity metrics for multi-specialty retrieval and clas-
sification tasks. Our experiments demonstrated that supervised en-
semble methods—by integrating multiple similarity measures such
as cosine, modified Euclidean, andmodifiedManhattan—consistently
outperformed baseline approaches. In particular, these supervised
techniques improved accuracy and F1-scores by approximately
5–10% compared to single-metric methods.

The combination of diverse similarity metrics enabled the mod-
els to capture richer semantic nuances, especially in challenging
cross-specialty datasets like BiPaR and AICUP2024. Additionally,
supervised methods were found to be more effective than unsuper-
vised clustering approaches, highlighting the importance of labeled
data and nonlinear feature integration in complex retrieval tasks.

Future work will focus on further optimizing these ensemble
strategies, potentially incorporating additional specialty-specific
embedding models and exploring advanced neural network ar-
chitectures to develop even more robust multi-specialty retrieval
systems.
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9 Appendices
The following is our model architecture figure.
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Figure 1: Relevance Prediction Architecture
𝑁 is the number of combinations of different similarity unions and

embedding models
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