NTCIR-18: Proceedings of the 18th NTCIR Conference on Evaluation ofInformation Access Technologies, June 10-13, 2025, Tokyo, Japan
DOT: https://doi.org/10.20736/0002002090

Biting into SUSHI: The University of Maryland at NTCIR-18

Douglas W. Oard

Shashank Bhardwaj
University of Maryland, College Park, MD, USA
(oard,sbhardw7)@umd.edu

Abstract

The University of Maryland participated in both subtasks of the
SUSHI Pilot Task. This paper describes the design of the systems
used for each task, and it presents some preliminary analysis of the
available results. The generation of data that has been shared with
other participating teams is also described.

Keywords

Archival search, Inference, Text classification

Team Name
UMCP

Subtasks
A (Folder Ranking), B (only Archival Reference Detection)

1 Introduction

The University of Maryland team participated in both the Folder
Ranking task (Subtask A) and the Archival Reference Detection
task of Subtask B. We did not participate in the Archival Reference
Boundary Detection task of Subtask B. Our team included two or-
ganizers of the SUSHI Task, plus one member (the second author of
this paper) who was not a task organizer but who contributed to the
development of the Subtask A relevance assessment system. Results
from this team should therefore be caveated with an understanding
that the team members had an unusual degree of insight into the
design details of the task, some of which may not have been known
as early or in as much detail by other SUSHI participants.

2 Subtask A: Folder Ranking

In our early work on box ranking [5] we had developed quite a
simple strategy—use the query to first rank the training documents,
then replace each Document ID with the Box ID for the box in
which that document was found, then remove duplicate Box ID’s,
working down from the top of the ranked list. This works because
documents in a box are to some extent similar to each other, so
finding a good training document in a box suggests that there may
be other good documents in that same box. A similar intuition
can be applied to folders, so that approach (with Folder ID’s sub-
stituted for Document ID’s) became our first baseline for folder
ranking. We could represent documents using title metadata, OCR
text, or folder labels. The OCR text has many character errors, but
Tokinori Suzuki from the Kyushu University team created a sum-
mary for each document using GPT4o0 and shared those with us,
so those became a fourth possible document representation. In our
run names, we abbreviate these fields T, O, F, and S, respectively.
When searching using a single field we used BM25; when using

426

Emi Ishita
Kyushu University
Fukuoka, Japan
ishita.emi.982@m.kyushu-u.ac.jp

multiple fields we used BM25F (in both cases, using PyTerrier! [4]).
We included no special handling for withdrawal sheets; they were
indexed in the same way as any other document. All documents
have title metadata; eight documents have no OCR text, and thus
no summary.?

We used the document title metadata in exactly the form it
appears in the metadata file, and the summaries in exactly the form
that we obtained them. For OCR text, we use the OCR text only from
the first page (because in our prior work we had found that (with
default BM25 parameters) variations in page count hurt more than
the additional evidence helped [5]). For folder labels, we performed
Subject-Numeric Code (SNC) translation using the translation table
provided by the organizers, using the 1965 translation when that
was available and otherwise the 1963 translation. When a scope
note was present, we truncated that note at the first instance of
any term from a list of terms that generally indicated the end of the
descriptive part of the scope note.> The format of the NARA SNC
codes is quite consistent, but Brown SNC codes appear in a wide
range of formats; we wrote some rather brittle code that successfully
handled most of those variations. However, we did not perform
SNC translation for Brown folder labels that contained 20 or more
characters because we found that relatively long Brown folder labels
were essentially already translated. We tuned the parameter 20 (and
all of our other parameters) to optimize nDCG@5 on the Dry Run
test collection.

The simple expedient of ranking the training documents can find
only folders that contain training documents, which in both the
Dry Run and the final official test collections are just under half the
folders in the test collection. To rank other folders, we performed
what we call “expansion,” in which for each other folder (i.e., each
folder with no training documents) we first selected a set of training
documents we expected would help to predict what the score for
that folder would have been, and then we computed a score for the
“expansion” folder based on the scores of that selected set of train-
ing documents. We implemented four ways of selecting training
documents, which we called CloseDate, SameSNC, SimilarSNC, and
SameBox. We defined SameSNC as any training document in any
folder that had the same SNC in its folder label, regardless of what
box that folder was in. For SimilarSNC we modified our SameSNC
test to generate any match of first and second level for POL codes
(i.e., POL 3-2 would match POL 3, and it would match POL 3-1)
or any match at first level for other codes (e.g., SCI 7 would mach
SCI 2 or SCI). For SameBox all we required was that the training
documents be from the same box, regardless of folder label.

Lhttps://github.com/terrier-org/pyterrier

2532480, S$32974, S35646, S37271, S37758, S37933, S37966, S40974

3These case sensitive terms were: ‘SEE’, ‘for which ’, ‘Exclude ’, ‘exclude ’, ‘Subdivide ’,
‘subdivide ’, ‘Other than ’, ‘other than ’, ‘For ’, ‘Except ’, ‘except .

NTCIR-18: Proceedings of the 18th NTCIR Conference on Evaluation ofInformation Access Technologies, June 10-13, 2025, Tokyo, Japan

For CloseDate we required SameSNC and that the training docu-
ment’s date be within the expansion folder’s date range. To support
this, we calculated an end date for every folder by first sorting the
start dates for all folders that shared an SNC and then defining
the end date of one folder to be the start date of the next folder
in that sequence. When there was no subsequent folder, or when
two or more folders in the sequence had the same start date, we
assigned no end date. Folders without end dates (which are actually
the majority of all folders) are excluded from CloseDate matches,
so CloseDate is very highly selective. It turned out that the greatest
challenge for checking CloseDate was that document dates in the
collection exhibit far greater variability than we had first expected.
Ultimately we were able to process the vast majority of those dates
correctly, although with rather brittle (and slow) code. Because we
expected our date processing to be useful to others, we shared JSON
objects with other participating teams for the full set of documents
in the collection and for the full set of folders in the collection. The
document JSON also includes the OCR text for every page, Tokinori
Suzuki’s summaries, and our translated folder labels.*

Once we had a set of training documents for an expansion folder,
we first averaged the BM25 or BM25F scores for those documents.
Often there was only a single training document in the set, and in
such cases this average was simply the score of that one training
document. This tended to produce overly optimistic scores (ranking
expansion folders as highly as a folder that had actually contained
a training document), so we then subtracted a score adjustment
factor. We set this adjustment factor to be the minimum value that
would place the highest scoring expansion folder for a query at
rank 2 (i.e., placing one folder that actually contained a training
document ahead of it). As with all our parameters, we selected 2 by
optimizing nDCG@5 on the Dry Run collection.

BM25 is limited to exact match on term stems, so we also ran
CoIBERT (Contextualized Late Interaction over BERT) in order to
take advantage of more nuanced matching using term embeddings.
To do this, we inserted separator tokens between the title, translated
folder label, and first-page OCR text (with OCR text trimmed back
from the end to fit all of that in 512 tokens). We ranked the folders in
the training set using ColBERTv2 [7],> with no additional collection-
specific pre-training or task-specific fine-tuning, using the same
process for ranking folders in the training set that we used for
BM25F. To rank folders that are not in the training set, the minimum
score from folders in the training set that share either the same box
or the same SNC code was used. This differs from the expansion
process that we used in our BM25F runs in two ways: (1) it was
based on folder scores rather than document scores, and (2) it was
based on SameBox or SameSNC (rather than the SameBox and
SameSNC we used for BM25F expansion). This resulted in our
UMCP-COLBERT-* runs.®

Because we expected ColBERT to find things that BM25F had
missed, and vice versa, we also implemented system combination
using Reciprocal Rank Fusion (RRF) [1]. When using RRF, we per-
formed expansion first, and then we applied RRF on the ranked
list that expansion had produced. Cormack’s RRF implementation
includes a parameter r = 60 that controls the emphasis given to

4 Available on the SUSHI website: https://sites.google.com/view/ntcir-sushi-task/
Shttps://github.com/stanford-futuredata/ColBERT
%Unlike our other submissions, there is also a UMCP-ColBERT-D run.

427

Oard, Bhardwaj, Ishita

items lower in the list (higher r gives relatively more emphasis to
lower items). Because our nDCG@5 measure is focused on only the
top five folders, we set r = 0. We also found that it was useful to
prefer the BM25F ranking (after expansion), so we gave ColBERT
65% of the weight of the BM25F score. Again, both parameters were
tuned on the Dry Run collection.

The folder labels indexed by BM25F included only folders that
contained training documents, but folder labels are available for
every folder. To allow all folder labels to influence our results, we
performed full-collection BM25 search of only the translated folder
labels, and then combined that with our initial RRF result, this time
giving folder-labels 38% of the weight of the first RRF result (again,
tuned on the Dry Run collection). This two-stage RRF process is a
bit of a hack, but this was our last enhancement, and it was easier
to do it this way than to rework our code base and then do the
necessary regression testing. We indicate the use of RRF by ‘-CF’
in the run name, indicating that RRF was run first with ColBERT
and then with full-collection folder label search results.

2.1 Formative Evaluation

We focused our formative evaluation principally on Folder nDCG@5,
using the Dry Run collection. The Dry Run collection has a couple
of peculiarities that limited its fidelity for this purpose. First, 155 of
the 200 topics have only one relevant document. If the Dry Run test
collection had a very large number of topics, that might not have
been a limiting factor. But with only 200 topics, this posed some
risk of our tuning to noise rather than to signal. Second, the queries
in the Dry Run collection had been created by selecting document
titles, and we had seen in our earlier work that searching document
titles did far better than searching OCR [5]. We were concerned
that this might be a collection artifact, and thus skeptical about the
effect of tuning in favor of document titles.

Nonetheless, the Dry Run test collection was the best we had,
so we set aside those concerns and simply tuned every parameter
using that collection. In addition to the parameters noted above,
this included 8 BM25F parameters (called ‘c’ and ‘w’ by Terrier)
that controlled field weights and length normalization for the four
BM25F fields. This tuning process ultimately led to our UMCP-*-
TOFS-L2-CF run. Surprisingly, that run did actually turn out to be
the best of the 25 runs that we submitted when scored by nDCG@5
on the final official test collection, although we don’t yet know
whether different tuning might have done even better.

During our tuning process we saw that SameSNC expansion
and SameBox expansion each yielded some improvement (by occa-
sionally highly ranking folders that could otherwise not have been
found), but that neither SimilarSNC nor CloseDate was helpful (pre-
sumably because Similar SNC let in too much noise, and CloseDate
very rarely actually did any expansion). This led us to implement a
conjunctive combination of SameSNC and SameBox, performing
expansion only when the SNC was the same and the training doc-
ument was in the same box as the expansion folder. This looked
good on the Dry Run test collection, so this is what we used in the
runs that contain ‘2’ in their name (indicating SameSNC+SameBox
expansion with a maximum rank of 2).

We were a bit skeptical about whether our BM25F parameter
tuning might be unhelpfully overtuned to the peculiarities of the

NTCIR-18: Proceedings of the 18th NTCIR Conference on Evaluation ofInformation Access Technologies, June 10-13, 2025, Tokyo, Japan

Sushi at Maryland

Table 1: Subtask A folder ranking results, 95% conf intervals.

Run nDCG@5 + MAP + MRR + S@1 +
? UMCP-T-TOFS-L2-CF 0.226 0.08 | 0.150 0.06 | 0.455 0.13 | 0.378 0.14
% UMCP-TD-TOFS-L2-CF 0.228 0.08 | 0.151 0.06 | 0.434 0.13 | 0.333 0.14
UMCP-TDN-TOFS-L2-CF 0.229 0.08 | 0.165 0.06 | 0.490 0.13 | 0.400 0.14
UMCP-ColBERT-T 0.185 0.08 | 0.113 0.06 | 0.377 0.13 | 0.311 0.14
o UMCP-ColBERT-TD 0.183 0.08 | 0.116 0.06 | 0.347 0.11 | 0.222 0.12
-E UMCP-ColBERT-TDN 0.173 0.08 | 0.103 0.06 | 0.313 0.12 | 0.244 0.13
% | UMCP-ColBERT-D 0.163 0.07 | 0.096 0.05 | 0.327 0.12 | 0.267 0.13
5 UMCP-T-TOFS-L2 0.211 0.08 | 0.128 0.06 | 0.416 0.14 | 0.356 0.14
UMCP-TD-TOFS-L2 0.213 0.08 | 0.129 0.06 | 0.412 0.13 | 0.333 0.14
UMCP-TDN-TOFS-L2 0.214 0.08 | 0.143 0.06 | 0.462 0.14 | 0.400 0.14
UMCP-T-O-B 0.191 0.08 | 0.119 0.06 | 0.398 0.14 | 0.356 0.14
UMCP-TD-O-B 0.183 0.08 | 0.117 0.06 | 0.378 0.13 | 0.311 0.14
UMCP-TDN-O-B 0.200 0.08 | 0.131 0.07 | 0.425 0.14 | 0.378 0.14
UMCP-T-S-B 0.176 0.08 | 0.114 0.07 | 0.376 0.14 | 0.356 0.14
% UMCP-TD-S-B 0.180 0.08 | 0.119 0.07 | 0.377 0.14 | 0.333 0.14
% UMCP-TDN-S-B 0.188 0.08 | 0.130 0.07 | 0.419 0.14 | 0.400 0.14
'gn UMCP-T-T-B 0.154 0.08 | 0.086 0.07 | 0.292 0.13 | 0.244 0.14
& | UMCP-TD-T-B 0.160 0.08 | 0.088 0.06 | 0.297 0.12 | 0.222 0.12
UMCP-TDN-T-B 0.183 0.08 | 0.097 0.06 | 0.339 0.13 | 0.289 0.13
UMCP-T-F-B 0.045 0.03 | 0.019 0.02 | 0.133 0.12 | 0.111 0.12
UMCP-TD-F-B 0.046 0.03 | 0.020 0.01 | 0.129 0.09 | 0.089 0.09
UMCP-TDN-F-B 0.059 0.04 | 0.036 0.02 | 0.173 0.09 | 0.089 0.08
UMCP-T-TOFS-U2-CF 0.210 0.08 | 0.152 0.06 | 0.432 0.13 | 0.333 0.14
B UMCP-TD-TOFS-U2-CF 0.212 0.08 | 0.153 0.06 | 0.428 0.13 | 0.333 0.14
= UMCP-TDN-TOFS-U2-CF 0.210 0.07 | 0.159 0.06 | 0.446 0.12 | 0.333 0.14
é TerrierBaseline-T 0.204 0.08 | 0.125 0.06 | 0.410 0.13 | 0.333 0.14
TerrierBaseline-TD 0.197 0.08 | 0.122 0.06 | 0.384 0.13 | 0.289 0.13
TerrierBaseline-TDN 0.203 0.08 | 0.132 0.06 | 0.417 0.13 | 0.333 0.14

Dry Run test collection, so we also submitted an untuned BM25F
with all parameters set to Terrier’s default values. The untuned runs
are indicated by ‘-U’ in the run name. Other expansion cases are
denoted ‘-L’, indicating learned parameters. The third alternative
is *-B’, which indicates the use of BM25 (with default parameters)
rather than BM25F.

Because the Dry Run test collection contains no useful Descrip-
tion or Narrative fields (in the that collection, those fields repeat the
topic’s Title field), we submitted Title (T), Title+Description (TD),
and Title+Description+Narrative (TDN) runs for each of our system
variants in order to characterize the effect of query length using
the final official test collection. For ColBERT we also submitted a D
run using only the topic’s Description field as the query.

2.2 Summative Evaluation

Table 1 shows folder ranking results for the 25 University of Mary-
land runs and the 3 baseline runs. Unlike the task overview pa-
per [9], here the runs are grouped into sets that show results for T,
then TD, then TDN queries, with the T row highlighted. Those sets
are then grouped by one of four run types (Baseline, Single-Field,
Expansion, or RRF). We focus our analysis on nDCG@5.

Focusing first on the Single-Field results, we see that OCR >
Summary > Title > Folderlabel. Comparing this to what we saw
on the Dry Run collection, Title is doing less well. This tends to
confirm our long-standing concern that using document titles as
queries, as was the case in the Dry Run test collection, tends to
produce overly optimistic results when the title field is indexed.
Moreover, we now see that OCR text is doing better than any other
single field. That comports well with our intuition, which is that
OCR text is far more extensive than title metadata, and thus should
have a better chance of matching. Finally, we see that Summaries
are a bit below OCR text, which is consistent with what we saw on
the Dry Run collection. We note, however, that these are GPT4o0

428

summaries for which only a single prompt was tried, that other
LLMs could also be tried, and thus that improved performance from
LLM-generated summaries may be possible.

Table 2 shows per-topic results for the same runs, organized
and highlighted in the same way as Table 1. Topics are ordered
left to right as in the task overview paper [10] (i.e., from easiest to
hardest, when averaged across all runs, including runs submitted
by other teams). Topics 16 and 28 are clearly unusual, with almost
every system placing the only relevant folder at rank 1 (which is
the only way to get an nDCG@?5 score of 1). Looking at them, these
are simply easy topics for a term matching system. Their titles
are “Amateur radio” and “Spread of equine influenza” for Topic 16
and Topic 28, respectively. There’s not much to be learned here; in
each case there was a relevant document in the training set with
the key query terms in both the Title, the OCR and the Summary.
As these are highly discriminative terms, highly ranking the best
training document (and thus its folder) is easy. However, neither
folder has the associated query term in its folder label, even after
SNC translation, so our runs with BM25 search of only folder labels
(UMCP-*-F-B runs) consistently fail on those two topics.

More interesting is to look at the six topics that have no document
from any relevant folder in their training set. These are Topics 8,
12, 26, 33, 40 and 43. For five of those six topics, none of the 28
runs (including the 3 baseline runs) ranked any relevant folder
anywhere in their top five. The one exception is Topic 33, where
matching on a full-collection folder label search seems to have
worked. This is easily seen from the fact that all six UMCP-*-*-CF
runs found one or more relevant folders in the top five, but that
no other run did so. Since COLBERT consistently missed all the
relevant folder(s) in its top five, it must be the full-collection folder
label search that explains this result. Topic 33’s title is “Coffee Rust
Eradication”. There are three highly relevant folders (and no other
relevant folders) for that topic, one of which has the Brown folder
label “AGR4-2 Coffee Rust.” So that one folder label is easily found.

Another question we can ask is how often our “expansion” tech-
nique finds folders that don’t contain any training document(s).
Focusing on Title queries, we see TerrierBaseline-T (which has no
expansion) places a relevant folder in the top five ranks for 22 of
the 45 topics. Disappointingly, our expansion run with Title queries
(UMCP-T-TOFS-L2, which omits any counfounding effects from
RRF) places relevant folders in the top five ranks only for that same
set of 22 topics. However, repeating the same analysis with TD or
TDN queries found one additional topic (Topic 38 for TD, Topic 9 for
TDN) for which a relevant folder was placed in the top 5 ranks by
UMCP-*-TOFS-L2 that had not been found in the top 5 ranks of the
corresponding Terrier Baseline. More detailed analysis is needed,
but there is at least some hint that our approach to expansion could
have occasionally achieved its intended effect.

Finally, we can also ask whether adding ColBERT helps. ColBERT
alone yielded results that were notably below BM25F, but for TD
or TDN (although not for T) queries ColBERT ranked relevant
folders in the top five for different topics than did BM-25F. This
relative outperformance of TD and TDN over T is unsurprising,
since ColBERT uses contextual embeddings that are pre-trained
on text expressed using sentences, and both the description and
the narrative fields contain sentences. For example, ColBERT with
TD queries adds four topics with relevant folder(s) in the top five

NTCIR-18: Proceedings of the 18th NTCIR Conference on Evaluation ofInformation Access Technologies, June 10-13, 2025, Tokyo, Japan

Oard, Bhardwaj, Ishita

Table 2: Folder ranking, per-topic results, nDCG@, topis ordered as in task overview paper [9].

Topic ‘ 16 28 36 2 19 44 23 15 5 20 35 37 11 1 18 22 21 7 4 24 32 39 33 27 38 42 45 41 29 40 34 9 12 6 3 8 10 13 14 17 25 26 30 31 43‘Me:m
Highly Relevant (HR) Folders| 1 1 4 5 6 2 6 4 15 7 3 9 10 6 3 1 1 17 2 2 1 3 4 3 5 3 8 2 3 2 2 331213121113 3.6
Relevant (R) Folders 5 5 9 16 1 3 11 3 4 5 7 2 5 2 4 3 3 4 5 7 2 4 1. 6 6 1 8 21101 11 8 6 1|36
No Train Folder is R or HR v v v v
‘UMCP-T-TOFS-L2-CF 1 1 0.54 0.61 0.55 0.48 0.55 0.37 0.55 0.55 0.42 0.49 0.49 0.44 0.39 0.20 0.24 0.13 0.28 0.22 0.23 0.08 0.17 0.17 0.226
UMCP-TD-TOFS-L2-CF 1 1 0.54 0.56 0.55 0.56 0.55 0.53 0.51 0.47 0.42 0.49 0.55 0.32 0.47 0.13 0.24 0.13 0.28 0.19 0.23 0.08 0.32 0.17 0.229
UMCP-TDN-TOFS-L2-CF ‘ 1 1 0.54 0.56 0.55 0.56 0.55 0.61 0.47 0.34 0.42 0.47 0.35 0.44 0.35 0.20 0.24 0.09 0.28 0.16 0.20 0.08 0.17 0.17 0.3 0.05 0.16 0.229
UMCP-ColBERT-T 1 1 0.72 0.61 0.55 0.48 0.55 0.53 0.51 0.34 0.42 0.17 0.17 0.19 0.18 0.20 0.13 0.11 0.21 0.16 0.08 0.185
UMCP-ColBERT-TD 1 1 0.72 0.50 0.55 0.55 0.55 0.37 0.35 0.32 0.42 0.15 0.34 0.05 0.26 0.20 0.13 0.30 0.17 0.08 0.17 0.05 0.183
UMCP-ColBERT-TDN 1 1 0.56 0.50 0.47 0.48 0.55 0.19 0.32 0.30 0.42 0.15 0.34 0.18 0.20 0.24 0.17 0.47 0.25 0.173
‘UMCP-ColBERT-D .39 1 0.72 0.46 0.51 0.56 0.51 0.53 0.51 0.32 0.42 0.34 0.07 0.20 0.48 0.28 0.06 0.164
UMCP-T-TOFS-L2 1 1 0.58 0.61 0.55 0.55 0.55 0.37 0.55 0.55 0.42 0.55 0.55 0.41 0.26 0.13 0.24 0.21 0.11 0.23 0.08 0.211
UMCP-TD-TOFS-L2 1 1072 0.6 0.550.56 0.55 0.56 0.55 0.34 0.42 0.55 0.55 0.33 0.26 0.1 0.24 0.21 0.11 0.08 0.08 0.21 0.213
UMCP-TDN-TOFS-L2 ‘ 1 1 0.72 0.61 0.55 0.56 0.55 0.61 0.55 0.34 0.42 0.55 0.38 0.41 0.30 0.20 0.24 0.13 0.11 0.16 0.08 0.16 0.214
UMCP-T-O-B T 1 058 0.61 0.55 055 0.55 0.37 0.55 0.55 0.42 0.47 0.13 0.07 0.20 0.24 0.20 0.06 0.16 0.34 0.191
UMCP-TD-O-B 1 1 0.72 0.58 0.38 0.48 0.55 0.37 0.55 0.55 0.42 0.34 0.13 0.05 0.09 0.20 0.24 0.20 0.06 0.16 0.13 0.182
UMCP-TDN-O-B ‘ 1 1 0.72 0.58 0.49 0.48 0.55 0.37 0.55 0.55 0.42 0.47 0.21 0.14 0.20 0.24 0.33 0.06 0.48 0.16 0.200
UMCP-T-S-B 1 1 0.69 0.58 0.60 0.48 0.55 0.37 0.51 0.34 0.42 0.53 0.09 0.2 0.24 0.20 0.11 0.176
UMCP-TD-S-B 1 1 0.70 0.58 0.60 0.48 0.55 0.52 0.55 0.21 0.42 0.40 0.21 0.09 0.20 0.24 0.20 0.11 0.179
UMCP-TDN-S-B 1 1 0.70 0.58 0.61 0.48 0.55 0.52 0.55 0.34 0.42 0.41 0.15 0.11 0.14 0.20 0.24 0.33 0.11 0.188
UMCP-T-T-B 1 1 0.61 0.34 0.55 0.39 0.34 0.61 0.13 0.42 0.34 0.51 0.13 0.26 0.09 0.13 0.11 0.155
UMCP-TD-T-B 1 1 0.42 0.64 0.51 0.47 0.34 0.61 0.34 0.42 0.21 0.49 0.13 0.26 0.13 0.07 0.17 0.160
UMCP-TDN-T-B ‘ 1 1 0.86 0.70 0.55 0.58 0.34 0.61 0.34 0.42 0.34 0.49 0.15 0.21 0.13 0.13 0.05 0.34 0.183
UMCP-T-F-B 0.34 0.37 0.13 0.34 0.21 0.5 0.12 0.045
UMCP-TD-F-B 0.17 0.37 0.23 0.13 0.34 0.21 0.5 0.12 0.046
UMCP-TDN-F-B ‘ 0.41 0.17 0.37 0.23 0.34 0.13 0.21 0.47 0.17 0.12 0.058
UMCP-T-TOFS-U2-CF T 1 0.54 0.61 0.55 055 0.55 0.37 0.34 0.5 0.42 0.47 0.13 0.31 0.30 0.20 0.24 0.20 0.24 022 __ 0.23 0.08 0.17 _ 0.17 0.210
'UMCP-TD-TOFS-U2-CF 1 1 0.54 0.56 0.55 0.55 0.55 0.37 0.32 0.55 0.42 0.47 0.34 0.26 0.43 0.20 0.24 0.20 0.22 0.16 0.23 0.08 0.17 0.15 0.212
UMCP-TDN-TOFS-U2-CF 1 1 0.54 0.56 0.55 0.48 0.55 0.52 0.28 0.21 0.42 0.34 0.34 0.40 0.30 0.20 0.24 0.20 0.17 0.16 0.23 0.08 0.17 0.17 0.3 0.06 0.210
TerrierBaseline-T 1 1 072 0.61 0.55 0.55 0.55 0.37 0.51 0.55 0.42 0.51 0.17 0.36 0.09 0.20 0.24 0.13 0.07 0.16 0.08 0.34 0.204
TerrierBaseline-TD 1 1 0.72 0.61 0.51 0.48 0.55 0.37 0.38 0.55 0.42 0.51 0.30 0.19 0.25 0.20 0.24 0.13 0.07 0.16 0.08 0.13 0.197
TerrierBaseline-TDN ‘ 1 1 0.72 0.58 0.55 0.48 0.55 0.23 0.55 0.55 0.42 0.51 0.17 0.21 0.14 0.20 0.24 0.23 0.07 0.48 0.16 0.05 0.202

beyond those found by Terrier-Baseline-TD. Using RRF to combine
BM25F with ColBERT picks up two of those, Topic 24 and Topic 45.

Looking broadly at these results, we see good results from index-
ing uncorrected OCR text, some benefit from searching multiple
fields, some benefit from ColBERT’s contextual embeddings, and
some benefit from indexing folder labels for the full collection. We
also see that trends among the summative evaluation results on the
full collection resemble trends that we saw in formative evaluation
on the Dry Run collection, with the notable exception of the Dry
Run collection inflating the results from matching title metadata to
queries that had also been derived from (other) title metadata. We
have seen little benefit from our expansion approach that sought
to use SameSNC and SameBox relations to find folders that had no
training examples, although we note that the comparisons that we
can make from this set of runs have some confounds that we might
be better able to explore in future experiments.

2.3 Next Steps for Folder Ranking

The most striking result we have seen is that no system we have
been able to build has been able to place any relevant folder in the
top five for about one-third of all topics (14 of the 45 topics). It
remains to be seen whether some combination of expansion and
better ranking techniques can improve our performance on those
difficult topics. Now that we have a richer and more representative
test collection than the Dry Run test collection, we can perform
more nuanced formative evaluation. Of course, once we do so we
will then need a new test collection on which to perform summative
evaluation. Perhaps we will be able to create a second set of topics
for this collection at NTCIR-19.

Another question that we could now explore is the effect of
different training sets on the evaluation results. So far we have
explored only uniform sampling at the rate of five documents per
box, but of course real archival collections are very often unevenly

429

digitized. So there is a substantial scope for experimentation with
different training sets, either uniformly or unevenly sampled.
Finally, we have not yet looked at jointly optimizing box and
folder ranking. Our present systems rank folders, but they do so
without regard to how many boxes would need to be requested in
order to get each of those folders. In practice, however, the cost of
a request depends on how many boxes are requested, and on the
physical proximity of those boxes. If we are to account for this in
our evaluation, we will need to develop new evaluation measures.

3 Subtask B: Archival Reference Detection

Our interest in Archival Reference Detection is motivated by a
long term goal of using the detected archival references as addi-
tional training data for a Subtask A system, particularly for archival
content that is not otherwise well described. We imagine that the
documents being cited have been well enough described in the text
of the paper at or near the point of citation, and that the principal
value to us of a footnote or endnote is therefore to indicate where
in an archival repository the item that is being cited can be found.
That perspective shaped our work in two ways. First, we are not
interested in using a footnote or endnote to learn only of the exis-
tence of a document that might be in an archive - our interest when
processing a footnote or an endnote is to learn where some specific
document can be found in some specific archival repository. That’s
not to say that we would not use additional descriptive text in a
footnote or an endnote, just that descriptions alone do not (in our
opinion) an archival reference make. This decision was important
to our work because the Dry Run collection that was available for
training was rather small, so some additional annotation would be
needed in this first year of the task. Of course, doing annotation
requires that that an annotator know what they are looking for,
and the Subtask B guidelines did not include specific guidance on
how to recognize an archival reference.

NTCIR-18: Proceedings of the 18th NTCIR Conference on Evaluation ofInformation Access Technologies, June 10-13, 2025, Tokyo, Japan

Sushi at Maryland

The second way in which our perspective shaped our work is
that to use Subtask B results in a Subtask A system, we would
want our Subtask B system to find a lot of archival references. Prior
work had found that about 1% of footnotes or endnotes contained
archival references [10], and that many of those references were
to one archival repository (The UK National Archives). If those
were accurate estimates, then we might expect to find about 8,500
archival references in the final Subtask B test collection. But if many
of those pointed to materials in one archival repository, we would
need vastly more than 8,500 archival references if we wished to
use Subtask B results as a basis for training Subtask A systems for
other archival repositories. So at this early stage in our work, the
simplest guideline is that the more we can find, the better. This led
us to view our goal as being primarily recall-oriented, although of
course all else equal we would prefer to have the highest reasonably
possible precision as well.

With that as background, we chose to investigate the degree to
which we could maximize recall (with at least moderately good
precision) by using active learning. Active learning has in recent
years been used for recall-oriented tasks such as discovery of digital
evidence in civil litigation [6] or selection of articles for systematic
reviews in medicine [2]. So there was at least some reason to expect
that active-learning might be useful for recall enhancement in this
setting as well. The principal difference between our work and those
other applications of active learning is that for our experiments we
have far fewer annotation resources. For that reason, we viewed
our Subtask B participation as a pilot study, exploring the behavior
of active learning on this task early in the process.

We made one other compromise in our work—we performed the
annotation ourselves (by the first and third authors of this paper)
rather than hiring and training an independent annotator. This
was an entirely practical decision because, as organizers, we were
already helping to design and manage the annotation process for
the final official test collection, and it simply was not possible for
us to manage a second independent annotation process in the time
that was available. As it turned out, this was a fortuitous decision
because what we learned by doing annotation ourselves helped us
to improve the independent annotation process for the final official
test collection. More on that below.

The organizers provided 1,836 annotated footnotes and endnotes
(collectively, “citations”) as the Dry Run test collection. The collec-
tion included 671 positive examples and 1,165 negative examples.
Our first step was, therefore, to train a classifier on that training
data, using passive learning as a single batch. We did this using a
scikit-learn SVM.” From a cursory examination of the results, it
was clearly awful. This led us to look at the training data. It was
(in our opinion), just as bad. So our first step was to clean up the
training data. To do this, we manually reannotated all 671 of the
positive training examples in the collection.

Our definition of what constituted a positive example actually
shifted quite a lot during this reannotation process as we encoun-
tered the need to make decisions that we had not previously con-
sidered. Three of those turned out to be quite consequential.

"https://scikit-learn.org/stable/modules/sgd.html

Documents. Early on, we encountered several descriptions
of human skulls. Later we found descriptions of jade jew-
elry. We have in recent papers been writing about looking
for documents because the more generic term archivists use
for individual elements in their collection (“items”) had con-
fused our readers (is a box an item? Not to an archivist...).
But coming face to face with a skull made us decide what
we meant by document. It turns out that one of the jade
items was a book with the pages etched in jade. That one
is pretty clearly a document, but we decided that the skulls
and the jewelry were not. But then we found oral history
recordings. That fit our world view of what a document is,
so we decided recordings were documents. But what about
recordings of instrumental music? Here we just sought to
keep it simple, and decided that all recordings were docu-
ments. Then we encountered some transcribed inscriptions
from statues and we needed to decide if the statue itself
that had the inscription was a document. We decided it was
not, because its primary purpose was not as a document,
but that a transcription of its inscription would be a docu-
ment. We don’t mean to claim that any of these decisions
are objectively correct—another researcher with different
interests might reasonably make different decisions. But we
did discover that all of these decisions needed to be made.
So we started writing down our decisions, and our basis for
making them. This evolved into an annotation guide.

Archival Repositories. When we write carefully we write
archival repository rather than archive because the archival
collections that interest us go by many names. For example,
sometimes they are a part of a research library (e.g., a special
collections unit) and sometimes they are a part of a different
type of organization that has a similar collecting mission
(e.g., a historical society). But then we encountered cases
that had no collecting organization, such as “available from
the author”” Is the author an archival repository? We decided
no, because we actually care about things that are collected
by institutions. So to be an archival repository you need
to be an institution. This led to the question of whether
the institution must have a place. We decided not — the
Internet Archive is an institution in the sense we mean,
regardless of where in cyberspace or the physical world
it actually exists. There’s a bit of a “we’ll know it when
we see it” character to that definition, but enumerating
every possible institutional form did not interest us, so we
accepted the imprecision. But then we found institutions
such as academic departments that you could contact to
get a copy of something that someone who worked there
had written. We decided that such cases were not archival
repositories because they lacked curatorial intent (which
we also did not sharply define, but by which we meant
something along the lines of collect for posterity). So in the
end an archival repository is a collection maintained by an
institution that has curatorial intent.

Location. The trickiest decision we needed to make was what
it meant for an archival reference to contain a location. In
the Dry Run collection, many things marked as archival
references lacked information about the location of the item

430

https://scikit-learn.org/stable/modules/sgd.html

NTCIR-18: Proceedings of the 18th NTCIR Conference on Evaluation ofInformation Access Technologies, June 10-13, 2025, Tokyo, Japan

(for example, letters written 200 years ago were marked as
archival references, perhaps because the annotator inferred
that they must be in some archive somewhere). Such cases
were easy for us; we marked them as not archival references.
We found many cases with only the name of an archive. We
marked those as archival references because we thought
they would be useful to a searcher as a starting point for
finding a document (essentially, this means that we defined
a fourth level for a Subtask A system: document, folder, box,
and repository; we were in essence imagining some future
repository ranking task). But the harder question was what
to do when the repository was not mentioned but some
location in a repository was (e.g., Box 14). We decided that
in such cases it was reasonable to assume that the author
of the paper containing the footnote or endnote we were
seeking to classify would not have included such a reference
unless somewhere else in their paper the archival repository
had also been described. Essentially, this involved accepting
a limitation of the Subtask B setup, which is that footnotes
and endnotes were being annotated in isolation. So if we
could recognize that a footnote or endnote referred to a
location in an archive we would mark it as an archival
reference, even if we could not tell from that one footnote or
endnote what archival repository they were talking about.

There were many other decisions to be made (e.g., what level of
certainly was required when something was not absolutely clear,
or what to do about words in languages other than English that the
annotator may not be able to interpret correctly), and we included
guidance on those things in the annotation guide as well. But the
three big problems we had not completely thought through before
the start of the process were whether skulls are documents, whether
an author’s personal files are archival repositories, and what consti-
tuted a location. Reannotating the Dry Run test collection forced us
to make each of those decisions. Of course, each decision must also
have been made when the training set was originally annotated,
but they were simply made differently than we now did for our
current research purpose.

We therefore reannotated all 671 positive examples in the Subtask
B Dry Run test set, finding 238 to be positive examples by our
definition. Because we considered the other 433 originally positive
examples in the Dry Run test set to be close negatives, we used those
433 cases as negative examples in our experiments, and we made
no use at all of the negative examples that had been distributed
with the Dry Run collection. From here forward, when we refer
to positive examples, we mean examples that are positive by our
definition.

Training an SVM on this set of 238 positive and 433 close nega-
tive examples and then running that classifier on the final official
Subtask B test collection resulted in our first submitted run, UMCP-
SGDC. We then implemented active learning using uncertainty
sampling with the ModAL python package.? Straightforward im-
plementations of uncertainty sampling tend to select duplicates,
and there are many duplicates in the collection. To minimize hu-
man effort, we recorded our decisions and and then automatically
assigned the same decision to future exact duplicates. This decision

8https://github.com/mod AL-python/modAL

431

Oard, Bhardwaj, Ishita

also had the effect of creating a growing cache of human annota-
tions that we could use in subsequent experiments. We therefore
kept all annotations that we generated during system development
and we used a classifier trained on those annotations as a starting
point in our active learning experiments. Because the initial annota-
tions were made on the Dry Run collection and all later annotations
were made on the final official test collection, we concatenated
those two collections for system training, but for testing we ran
only on the final official test collection. This concatenation also
simplified feature generation since all features for the final official
training set had been used when training the original classifier.

Our decision to record annotations made during active learning
had an additional advantage: we could correct some classifier errors
prior to submission. After training a classifier and then using that
classifier to make decisions on every item in the test set, we simply
replaced the classifier’s decision with the annotator’s decision for
any item that the annotator had annotated. This is a simple hack for
converting an inductive classifier (i.e., one designed to generalize
to unseen content) into a transductive classifier that works over a
set of items that was already known at training time.

We experimented with seven scikit-learn classifiers, all with their
default parameters. The only one we used in any submission was the
one we call SGDC, which was a Support Vector Machine (SVM) with
a linear kernel, trained using Stochastic Gradient Descent (SGD),
with score calibration performed using cross-validation. We also
tried the same classifier without score calibration, a second SVM
classifier (SVMlite) using either a linear or a Radial Basis Function
(RBF) kernel, logistic regression, and two variants of Naive Bayes
(a straightforward multinomial Naive Bayes implementation, and a
second implementation that scikit-learn calls ComplementNB that
is designed for tasks with high class skew). We consistently saw
the best results (as defined below) from SGDC.

We tried three approaches to select examples for annotation: rel-
evance sampling, uncertainty sampling, and ModAL’s uncertainty
batch sampling. We found uncertainty sampling to be the best. Rel-
evance sampling is generally preferred when positive examples
are relatively rare [3], but once we initialized a classifier using our
manually reannotated Dry Run set, positive examples were easily
found. Relevance sampling thus resulted in our annotating large
numbers of positive examples, which was not particularly helpful.
We avoided some of the problem with uncertainty sampling select-
ing many duplicates by automatically replicating the annotation for
previously seen exact duplicates (although we still had to deal with
near duplicates), so uncertainty sampling was a reasonable choice.
ModAL’s uncertainty batch sampling seeks to maximize the utility
of an entire set of annotations, but we found that it had a penchant
for showing us Cyrillic or Arabic scripts, neither of which we could
read. In an effort to avoid this, we used the Python alphabet detector
package® to remove 35,716 footnotes and endnotes in which the
characters were more than 75% Cyrillic or Arabic from the final of-
ficial test collection. We still found that ModAL’s uncertainty batch
sampling was turning up what seemed to us to be corner cases
more often than it found what seemed to likely be broadly useful
training examples, so ultimately we gave up on uncertainty batch
sampling and simply used uncertainty sampling. As a nice side

“https://github.com/EliFinkelshteyn/alphabet-detector

NTCIR-18: Proceedings of the 18th NTCIR Conference on Evaluation ofInformation Access Technologies, June 10-13, 2025, Tokyo, Japan

Sushi at Maryland

Table 3: Subtask B results. Top block used active learning,.

Positive Trng | System Estimated
UMCP- Run Name Examples Yes Correct Yes | Precision Recall — F;
GPT-SGDC-U-2-30 620 7,804 5,424 0.695 0.119 0.155
GPT-SGDC 560 7,219 5,061 0.701 0.110 0.145
SGDC-U-3-75 463 5,060 3,916 0.774 0.081 0.111
GPTauto-SGDC 455 4,857 3,623 0.746 0.074 0.099
SGDC 238 4,464 2,973 0.666 0.061 0.082

effect, ModAL’s implementation of uncertainty sampling is very
much faster than its implementation of uncertainty batch sampling,
which was helpful when doing interactive active learning.

Once we settled on SGDC and uncertainty sampling, all that
remained was to select a batch size and number of iterations. In
general we selected a batch size that allowed us to finish the number
of annotations we wished to make using just a few batches. This
then led to our second submitted run, UMCP-SGDC-U-3-75, in
which we did three batches of 75 each.!® For this run we used
all of the annotations that we had accumulated during system
development for initialization.

After submitting those two runs, Tokinori Suzuki shared the
results of GPT40 annotation on the final official test collection
with us. One potential weakness of active learning is that it can
iteratively learn one part of the space well, but it may take quite a lot
of annotation before it discovers positive examples that use entirely
different vocabulary. We speculated that GPT might thus help with
diversity. Looking at the GPT results, we saw many cases in which
(in our opinion) GPT had gotten it wrong, so we simply took the GPT
positive examples, reannotated them ourselves as a batch, and then
added our annotations for what GPT had originally called positive
(i.e., our positives, and what we then treated as our close negatives)
to the training data that had accumulated from all of our prior runs
(including, by that point, test set annotations from UMCP-SGDC-
U-3-75). This produced UMCP-GPT-SGDC. Note that we classify
that run as active learning because although it was actually run
using our passive learning configuration, it uses training data that
had previously been selected for annotation using active learning.
We then sought to further improve the resulting classifier by doing
two rounds of 30 test set annotations using active learning with
uncertainty sampling, thus producing our UMCP-GPT-SGDC-U-
2-30 run, which turned out to be our best run by every measure
except Precision.

Finally, we wondered what would have happened if we had sim-
ply trusted GPT as a basis for training a classifier. To answer that
question, we ran passive learning using our initial manually anno-
tated training set plus GPT’s original positive decisions (i.e., as they
had originally been provided, before we did manual reannotation).
This produced our UMCP-GPTauto-SGDC run.

3.1 Formative Evaluation

Because we had used all of the Dry Run test collection for training,
for formative evaluation we had to rely on manual inspection of
the classifier’s results. Because of this, all of our runs (including
our passive learning runs) are classified as “manual runs” according
to the Subtask B guidelines. Ultimately what we wanted was to

Fewer than 75 manual annotations were actually needed per batch because memo-
rized annotations could be applied when exact duplicates were found.

432

6,000

5,000

4,000

3,000

2,000

Estimated Correct System YES

1,000

200 300 400

Manual YES Annotations

500 600 700

Figure 1: Amplification of manual positive annotation.

find as many correct positive annotations as possible. That led us
to establish as our formative evaluation measure to be optimized
maximizing the number of positive decisions made by systems
whose positive decisions were usually correct. In other words, we
sought to maintain a relatively high precision while maximizing
relative recall. We initially simply displayed a random sample of
positive classification results for a single classifier. If the vast ma-
jority of them looked good then we deemed the precision to be
acceptable. This is how we learned that SGDC was consistently
doing reasonably well at precision, and that it was consistently
finding the greatest number of positive examples. Later in our work
we ran every classifier every time, and we were then able to dis-
play random samples from what one classifier called positive that
another classifier had called negative; we typically showed three
randomly selected examples from each, for all possible classifier
pairs. We used this display to look for cases in which system com-
bination might be useful, but we never found such a case. So all of
our submitted runs are single-system SGDC runs.

3.2 Summative Evaluation

Table 3 summarizes results for our five runs. One clear conclusion is
the more positive training examples you have, the better. We see Pre-
cision near 0.7 for all runs, with the best recall (and hence the largest
number of positive cases found) coming with the largest number
of training examples. The raw GPT results seem to be only mod-
estly beneficial (compare UMCP-SGDC to UMCP-GPTauto-SGDC),
but manually checking those and adding the positive and close
negatives to the training set was a big win (compare UMCP-SGDC-
U-3-75 to UMCP-GPT-SGDC). Active learning was only modestly
beneficial (compare UMCP-SGDC-U-3-75 to UMCP-SGDC and com-
pare UMCP-GPT-SGDC-U-2-30 to UMCP-GPT-SGDC), although
we note that we performed very few active learning iterations. All
of these results use only SGDC, but in formative evaluation (which
was on the same collection) we saw that no other system returned
as many positive classification decisions, so it seems unlikely that
any other classifier would have done as well by Recall. Because Fy
is always closer to the lower of Precision and Recall, and because
Recall is much lower than precision, it thus seems unlikely that any
other classifier would have done as well by Fj.

Figure 1 shows another way to look at these results. The horizon-
tal axis in that figure is the number of positive examples that were

NTCIR-18: Proceedings of the 18th NTCIR Conference on Evaluation ofInformation Access Technologies, June 10-13, 2025, Tokyo, Japan

found through manual annotation, and the vertical axis is the total
number of true positive examples that a system trained with that
number of manually annotated positive examples was able to find.
As can be seen, our best classifier produces about a 10:1 correct
positive annotation ratio. We should be careful to note, however,
that our horizontal axis is based on positive manual annotations,
and that the total number of manual annotations that are needed to
find those positive examples is about twice that value. We should
also note that we would expect diminishing returns with addition
training data, although we do not yet see that effect over the limited
range of training data that we have looked at.

One important caveat on our summative evaluation results on
the final official test collection is that the annotation guidelines used
by the independent annotator who annotated the final official test
collection were essentially the same as the annotation guidelines
that we had developed for our own work. That’s both good and
bad—good in that the annotator had well worked out annotation
guidelines; bad in that we can’t now know how well our systems
would have done in an arms-length summative evaluation. For a
pilot task in which the only participants were the organizers, this
seems like a fine tradeoff to have made. But in future evaluations
we will want to be careful to freeze the annotation guidelines in
advance and share them with all participants.

3.3 Next Steps for Archival Reference Detection

The quite low recall of all of our systems is in one sense good news,
since it indicates that there is much more to be found than our
present classifiers are able to find. We have looked at the annota-
tions for the “bottom” stratum (i.e., the stratum that was sampled
very sparsely from cases that no run had classified as positive), and
we agree that some of the footnotes or endnotes in that stratum
with positive annotations are truly archival references. Given the
sparse sampling rate, each positive sample in that stratum suggests
the presence of more than 500 actual archival references in the full
collection [9], so it seems reasonable to expect that there are thou-
sands, and perhaps tens of thousands, as yet undetected archival
references that are still to be found. Although our best system found
less than 1% of the collection to contain an archival reference, the
true number may be closer to 3%. That’s good news, since as we
said at the outset, the more the better from the perspective of our
ability to ultimately use these archival references in systems like
those in Subtask A.

That, however, leaves open the question of how to find many of
those undetected archival references. We now have a much larger
number of positive training examples available, notably including
the positive examples in the bottom stratum—some of which may
be quite unlike the ones that we have found to date. So training
on more data is an obvious next step. Another obvious thing to
try is a neural classifier, some variant of BERT. Such classifiers
are data hungry at training time, but we now have more training
data. Moreover, such classifiers can also be pre-trained using large
unannotated collections, and we now have that as well. Finally, we
suspect that if we could do extraction from archival references well
(e.g., to find the archive name and the location within that archive)
then we could co-train classifiers and extraction systems in such a
way that a classifier could use the extraction system’s results as a

433

Oard, Bhardwaj, Ishita

clue for when it is on the right track. Of course, the extraction task
is still some distance in the future for us, but a good first step in
that direction is the Archival Reference Boundary Detection Task,
and we note that there is now some training data for that task.

4 Conclusion

Looking back over our work on the two SUSHI subtasks, we have
learned quite a lot. First, we had the opportunity to look closely in
Subtask A at how inference might be done, and at least on the Dry
Run collection it seems that the combination of same box and same
SNC may be a useful signal. More work is needed to see how best
to use that signal. We also now have a much better test collection
with which to look into other signals, such as the box sequence,
that we have not yet looked at in any detail. Subtask B turned out to
be richer than it first appeared, with many consequential decisions,
and ultimately with better results than we have previously seen.
Our original motivation for participating in Subtask B had been
to contribute to the stratified sampling that was used to guide
assessment, but we got much more out of it than that. It will also
be interesting in the future to do analysis on the output of these
classification systems, since they can, for example, also be used
to characterize the impact of archival collections on scholarship
in much the same way as bibliographic citations can be used to
characterize the impact of publications [8]. In the end, SUSHI has
opened up as many new questions as it has answered. Which seems
appropriate for a pilot task.

Acknowledgments

We thank Tokinori Suzuki for sharing GPT summaries for Subtask
A and GPT classification results for Subtask B with us. Having
access to those GPT results helped to enrich our experiments.

References

[1] Gordon V Cormack, Christopher R Palmer, and Charles LA Clarke. 1998. Effi-
cient Construction of Large Test Collections. In Proceedings of the 21st Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 282-289.

Wojciech Kusa, Guido Zuccon, Petr Knoth, and Allan Hanbury. 2023. Outcome-
Based Evaluation of Systematic Review Automation. In Proceedings of the 2023
ACM SIGIR International Conference on Theory of Information Retrieval. 125-133.
David D Lewis. 1995. A sequential algorithm for training text classifiers: Corri-
gendum and additional data. In ACM SIGIR Forum, Vol. 29. 13-19.

Craig Macdonald and Nicola Tonellotto. 2020. Declarative Experimentation in
Information Retrieval using PyTerrier. In Proceedings of the 2020 ACM SIGIR on
International Conference on Theory of Information Retrieval. 161-168.

Douglas W. Oard. 2023. Known by the Company It Keeps: Proximity-Based
Indexing for Physical Content in Archival Repositories. In 27th International
Conference on Theory and Practice of Digital Libraries. 17-30.

Douglas W Oard and William Webber. 2013. Information Retrieval for E-
Discovery. Foundations and Trends in Information Retrieval 7, 2-3 (2013), 99-237.
Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei
Zaharia. 2022. ColBERTv2: Effective and Efficient Retrieval via Lightweight Late
Interaction. In Proceedings of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics. 3715-3734.

Donghee Sinn. 2013. The Use Context of Digital Archival Collections: Mapping
with historical research topics and the content of digital archival collections.
Preservation, Digital Technology & Culture 42, 2 (2013), 73-86.

Tokinori Suzuki, Douglas W. Oard, Shashank Bhardwaj, Emi Ishita, and Yoichi
Tomiura. 2025. NTCIR-18 SUSHI Pilot Task Overview. In Proceedings of NTCIR-
18.

Tokinori Suzuki, Douglas W. Oard, Emi Ishita, and Yoichi Tomiura. 2023. Au-
tomatically Detecting References from the Scholarly Literature to Records in
Archives. In 25th International Conference on Asia-Pacific Digital Libraries, Part II.
100-107.

(10]

