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Abstract
In this paper, we propose a three-stage method for the U4 TableQA
task. The method first analyzes and segments the target table into
header and data cell sections using a machine learning classifier.
Then, it generates natural language descriptions for each data cell
using sentence templates based on the table structure. Finally, it
retrieves relevant sentences matching the input question from the
generated sentence set to form the TableQA result. This approach
is also extended to the Table Retrieval task.

Evaluation experiments showed that the Table Retrieval task
achieved an accuracy of 0.3569, whereas for the TableQA task, the
accuracy of cell_id prediction was 0.7797, and the value prediction
was 0.7168.
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1 Introduction
In this paper, we propose amethod for theNTCIR-18 U4 [2] TableQA
task. The proposed method solves the TableQA task in three stages.
In the first stage, we analyze the target table and divide it into
header and data cell sections. The header section consists of an
inverted L-shaped region comprising the upper and left parts of the
table, while the data cell section occupies the remaining lower-right
rectangular region (Figure 17). To perform this division, we use a
classifier constructed through supervised machine learning that cat-
egorizes each cell into four types: Metadata, Header, Attribute, and
Data. Based on the classification results for all cells, we determine
the boundary between the header and data cell sections.

In the second stage, we generate natural language descriptions
for each data cell. For text generation, we use the table divided in
the first stage, creating sentences using a template with title text
explaining each cell’s row and column along with the cell’s own
value. We perform this for all data cells to create a set of searchable
sentences. Finally, we search for sentences matching the question
from this set to determine the TableQA result. Additionally, by
using this method to generate a representative set of sentences for
the entire table, we also address the Table Retrieval task.

The evaluation experiments showed that while the Table Re-
trieval task achieved a modest accuracy of 0.3287, the TableQA
task demonstrated significantly better performance. By employing

Run ID 127, which utilizes our best-performing configuration, we
achieved a cell_id accuracy of 0.7850 and a value accuracy of 0.6871.

2 Methods
Figure 1 shows the flow of our proposed methods. This section
describes our proposed methods for the TableRetrieval and TableQA
tasks.

Figure 1: Flow of Proposed Methods for Each Task

2.1 Table Preprocessing
Since the provided annual securities reports are HTML documents,
we first extract and preprocess the tables. The extraction and pre-
processing are performed in the following steps:

(1) Extract tables from HTML in sequence
(2) Normalize cell text
(3) Process units affecting entire rows/columns
(4) Process units affecting individual cell text
(5) Process units affecting the entire table
First, we extract tables from HTML, considering cell merging

during extraction.
Next, we perform cell text normalization. The normalization

includes:
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• Using provided normalization functions (converting full-
width to half-width characters, unifying triangle symbols to
minus signs, etc.)

• Standardizing dates to YYYY-MM-DD format
• Converting birth dates (YYYY年 MM月 DD日生) to YYYY-
MM-DD format

• Normalizing ”円” and ”銭” to decimal values
• Removing annotations like ”※ 2” and ”〔9〕”

For tables normalized in this way, we process numerical cells
according to their specified units.

Initially, we process units affecting entire rows or columns. Fig-
ure 10 shows an example where sales and operating profit are
specified in ”millions of yen”. To apply such units to numerical
cells, we process them as follows: ”If a specific unit exists in a cell,
apply that unit to all numerical cells in that row (or column).” The
following units were handled:

(百万円) Multiply values by 1,000,000
(%) Multiply values by 0.01
(千円) Multiply values by 1,000
(千株) Multiply values by 1,000
Additionally, there are units that apply only to individual cells.

Figure 2 shows an example. When we apply the previously de-
scribed processing to this table, we get the result shown in Figure 4.
At this stage, the cell ”千人民元 25000” (25,000 thousand Chinese
yuan) is not processed as it is not recognized as a numerical cell.

For this table, we apply the following processing: ”If a cell con-
tains ’[specific unit] + number’, remove the unit and apply it to the
cell value.” This results in the outcome shown in Figure 6.

Figure 2: Example of a Table Before Processing

Figure 3: Example of a Table Before Processing in English

Here are examples of the units that were targeted:
千シンガポールドル, etc. Multiply values by 1,000
百万ルピア, etc. Multiply values by 1,000,000

In total, we normalized 13 different units in this way.
Finally, we process units affecting the entire table. Figure 8 shows

an example where ”(単位:百万円)” is specified at the top right of
the table, affecting all values. This processing was applied only to

Figure 4: Example After Row Unit Processing in English

Figure 5: Example of a Table Before Processing in English

Figure 6: Example After Complete Processing

Figure 7: Example of a Table Before Processing in English

tables that hadn’t undergone other unit processing, and we only
handled ”(単位:百万円)” in this case.

2.2 Common Method
We performed TableRetrieval and TableQA using the preprocessed
tables. To accomplish these tasks, we propose a method that ex-
tracts values from tables and tables from documents by ”converting
tables into natural language sentences” as a common approach.
Specifically, we divided the table into header and data cell sections,
and based on this division, we converted the table into natural
language text.

First, we classify each cell text in the table into one of four
categories: Metadata, Header, Attribute, and Data, following the
TDE subtask setting from NTCIR-17 UFO.

The NTCIR-17 UFO TDE subtask was a subtask conducted last
year at the NTCIR-17-UFO evaluation forum, which classifies ta-
ble cell text into four categories: Metadata, Header, Attribute, and
Data. This task was designed to understand the structure of tables
contained in annual securities reports.

For the TDE implementation, we referenced the approach of
OUC [4], who participated in NTCIR-17 UFO. The method uses a
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Figure 8: Example of Unit Affecting Entire Table

Figure 9: Example of Unit Affecting Entire Table in English

Figure 10: Example of Unit Affecting Entire Row

Figure 11: Example of Unit Affecting Entire Row in English

BERT classifier that takes cell text as input and performs four-way
classification.

Based on the TDE results, we perform table segmentation. Rather
than using a single label, the TDE output uses a 4-label probability
vector (%<8 , %ℎ8 , %08 , %38 ) to determine the segmentation.

To divide the table into header (upper-left) and data cell (lower-
right) regions, we consider 100 different segmentation patterns
from row 1, column 1 to row 10, column 10. For each segmentation
pattern, we calculate the TSS (Score) as shown in the following
equation:

)(( =

∑
8∈H (%<8 + %ℎ8 + %08 )

|H | +
∑

9∈D %3 9

|D| (1)

Here,H represents the set of cells divided into the header sec-
tion, and D represents the set of cells divided into the data cell
section. %<8 + %ℎ8 + %08 is the sum of probabilities for Metadata,

Header, and Attribute for the i-th cell assigned to the header sec-
tion. Similarly, %3 9 represents the Data probability for the j-th cell
assigned to the data cell section. We calculate the TSS by taking
the sum of the average probability that header section cells are
classified as Metadata, Header, or Attribute and the average proba-
bility that data cell section cells are classified as Data, and adopt
the segmentation pattern that yields the highest TSS value. Note
that when the source text for classification is an empty string, we
consider the classification result unreliable and do not use it in TSS
calculation.

When we classify Figure 12 using TDE, we obtain the result
shown in Figure 14. In the example, probabilities are truncated to 4
decimal places.

Figure 12: Example of Table Before TDE Processing

Figure 13: Example of Table Before TDEProcessing in English

Figure 14: Example of Table After TDE Processing

The cells in Figure 14 contain probability vectors [%<, %ℎ, %0,
%3]. For this figure, we consider two possible segmentation pat-
terns: 1 row × 1 column and 2 rows × 1 column, from which we
determine the optimal segmentation. Figures 15 and 16 show the
tables segmented at 1×1 and 2×1, respectively.

The TSS for the 1×1 segmentation is:

(0.001 + 0.996 + 0.001) + ... + (0.000 + 0.987 + 0.009)
4

+ 0.999 + 0.999
2

= 1.99675 (2)
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And for the 2×1 segmentation:

(0.001 + 0.996 + 0.001) + ... + (0.000 + 0.987 + 0.009)
4

+ 0.999 = 1.7972 (3)

Therefore, we determined that the 1×1 segmentation was optimal
for this table.

Figure 15: Table Segmented at 1×1

Figure 16: Table Segmented at 2×1

2.3 Table-to-Text Generation
Next, we perform text generation using the segmented tables. For
each target cell, we generate text using a template ”X の Y は Z
です。” where X is the concatenation of header texts from the top
with ”、”, Y is the concatenation of header texts from the left with
”、”, and Z is the target cell value. Note that when the target cell Z
is empty, we skip generating text for that cell.

For example, when generating text for the data cell ”458140” in
Figure 17, X is ” 第 44 期”, Y is ” 売上高、（百万円）”, and Z is
”458140”, resulting in the generated text ”第 44期の売上高、(百
万円)は 458140です。”

Additionally, considering tables where column and row relation-
ships may be reversed, we also explored a method that generates
two sentences using both templates ”Xの Yは Zです。” and ”Y
の Xは Zです。”

Figure 17: Table After Segmentation

2.3.1 Proposed Method for TableRetrieval. In TableRetrieval, given
a question text and document ID, the task is to output a table ID.
To accomplish this, we extract all tables from the HTML file of the
given document ID, generate sentences for each table, and combine
them into a single document to create document representations of
tables.

Figure 18: Table After Segmentation in English

Using these generated documents and question text, we imple-
mented table retrieval using Okapi BM25 for search.

While training, validation, and test datasets were provided, we
only used the test data for implementation and evaluation without
performing any training.

We performed processing and validation through the following
steps:

(1) Extract tables from HTML
(2) Generate sentences using first row and first column as header

cells
(3) Search through table documents using question text with

Okapi BM25
(4) Output table_id based on search results

The BM25 parameters were set to :1 = 1.5 and 1 = 0.75.

2.3.2 Proposed Method for TableQA. In TableQA, given a ques-
tion text and table ID, the task is to output a cell ID and its value.
To accomplish this, we extract the corresponding table from the
HTML based on the given table ID, perform table segmentation,
and generate text for each cell through text generation.

Using these generated sentences and the question text, we select
the appropriate cell and value.

For sentence selection, we use a binary classifier that determines
whether a query and sentence are relevant. Specifically, we con-
struct a BERT classifier that takes the concatenation of the query
and the sentence text with a [SEP] token as input and outputs a
binary classification result of relevant (1) or not relevant (0). The
[SEP] token is one of the special tokens used in BERT models, indi-
cating a ”Separator” between sentences. Here is an example of the
input text:

Example of Concatenated Text� �
株式会社ニトリホールディングスの第 44期における「売
上高、経営指標等」は？ [SEP]第 44期の売上高、(百万円)
は 458140です。� �
For training data, we randomly selected one matching sentence

(relevant) and one non-matching sentence (irrelevant) for each
query text from the correct cell and incorrect cells respectively. We
created one piece of training data each for relevant and irrelevant
labels per query text, creating training data for all query texts
provided in TableQA. Table 1 shows the number of question texts
in the training data provided by NTCIR-18 U4’s TableQA subtask
and the number of fine-tuning training data created from it. The
difference in training data between DryRun and FormalRun is due
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to the removal of data deemed inappropriate during the DryRun
period.

In theory, the number of relevant and irrelevant sentences should
equal the number of given question texts. However, this discrepancy
in the results occurred due to cases where either there were no
data sections in the table segmentation (tables where all cell text
was classified as header text by TDE) or where answer cells were
included in the header section.

We used ku-nlp/deberta-v3-base-japanese, a pre-trained BERT
model provided by Kyoto University Language Media Processing
Laboratory.

Table 1: Number ofQuestions and Fine-tuning Training Data
in TableQA Subtask

Dataset Type DryRun FormalRun
Number of Questions in Training Data 22982 10300

Generated Relevant Sentences 22152 10090
Generated Irrelevant Sentences 22969 10299

3 Experiments
In this section, we present the evaluation results.

3.1 TDE Evaluation
For training data, we used the FormalRun data from NTCIR-17 UFO.
We implemented the model by fine-tuning the BERT pre-trained
model cl-tohoku/bert-large-japanese-v2 with cell text and cell labels
obtained from the training data. Table 2 shows the resulting training
data.

Table 2: Number of Training Data for TDE

Label Data Count
Metadata 143
Header 13930
Attribute 11236
Data 41060

Using this training data, Table 3 shows the results of our imple-
mented model. For inference, we used the Test data included in the
FormalRun.

Table 3: Experimental Results for TDE

Label Precision Recall F1-score
header 0.8518 0.8623 0.8570
attribute 0.7892 0.7908 0.7900
data 0.9761 0.9718 0.9739

metadata 0.5909 0.5909 0.5909

The target data consists of 192 tables that are subjects of the
NTCIR18-U4 TableQA subtask, for which we performed annotation.
Figure 19 shows the table segmentation positions for these 192
annotated tables.

The results show that:

• Themost common segmentation position is at row 2, column
1

• Most column segmentation positions are at column 1
• The maximum column segmentation position is at row 10

Figure 19: Heatmap of Table Segmentation Positions

Using the created table segmentation dataset, we evaluated the
table segmentation performance. Table 4 shows the evaluation
results of the table segmentation.

The table segmentation range refers to the search range used
when segmenting tables based on TDE results using TSS. For range
1-3, we search through 9 patterns from row 1, column 1 to row 3,
column 3, and for range 1-10, we search through 100 patterns from
row 1, column 1 to row 10, column 10.

Additionally, the accuracy is shown for cases where empty cell
classification results are either used or ignored in TSS calculation.

As shown in Figure 19, since some tables have headers up to
column 10, expanding the search range to 1-10 increases accuracy
by 0.046. Furthermore, by excluding empty cell classification results
from TSS calculation, accuracy increases by 0.109. This is because
the TDE model tends to classify empty cells (blank cells) as Data
cells, which can decrease accuracy when empty cells appear in the
header section.

Table 4: Table Segmentation Accuracy Results

Empty Cell Classification Segmentation Search Range Accuracy

Used 1-3 0.605
1-10 0.651

Ignored 1-10 0.760

3.2 Evaluation of TableRetrieval
Table 5 shows the evaluation results for TableRetrieval. We used
validation data for evaluation, with 2,897 question texts as targets.
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Table 5: TableRetrieval Evaluation Results (Validation Data)

Method Segmentation Range Accuracy
Baseline Fixed (1×1) 0.181

w/o Normalization Fixed 0.195
w/o Normalization 1-3 0.209

w/ Table Header Text 1-3 0.314

The baseline shows the results of applying normalization functions
and row/column unit processing provided by U4 to cell texts during
table preprocessing.

Without performing normalization and by calculating TSS us-
ing TDE to search for table segmentation, the accuracy improved
from 0.181 to 0.209, an increase of 0.028. Additionally, by adding a
sentence above the table based on the HTML, the accuracy reached
0.314.

We then conducted evaluation on the test data. The TaskOrga-
nizer achieved an accuracy of 0.234 by embedding cell text concate-
nations using text-embedding-3-small and returning answers based
on the shortest distance to question embeddings.

Using our best-performing method from the validation data, we
achieved an accuracy of 0.3569 on the test data. This result is 0.1435
higher than the TO’s result of 0.2134.

3.3 Evaluation of TableQA
Table 6 shows the evaluation results for TableQA. Test data was
used for evaluation.

The TaskOrganizer provided the cell text extracts combined with
the question text to GPT-4o, which produced answers with a value
accuracy of 0.690.

The Baseline shows the results of applying the normalization
functions and row/column unit processing provided by U4 to cell
text during table preprocessing. The BERT classifier (JRTEC) refers
to a classifier fine-tuned using JRTE-Corpus (Japanese Realistic
Textual Entailment Corpus) [1]. JRTE-Corpus is a textual entailment
recognition dataset created from Jaran review data and provided
by Recruit Co., Ltd.

By expanding the table segmentation search range from 3 to
10, we observed improved accuracy. Additionally, using the tex-
tual entailment recognition model yielded slightly higher accuracy
compared to BM25.

When fine-tuning the BERT classifier (DeBERTa-V3) using our
created training data, we observed significant accuracy improve-
ments compared to using BM25. This result was 0.0401 higher com-
pared to the TO’s result of 0.6470. However, when using two sen-
tences during inference, there was a slight decrease in accuracy.

For comparison, Table 7 shows the results of training with the
FormalRun dataset. We compared using the method from ID 128.

Comparing the results, we found that the DryRun accuracy was
better. Although the FormalRun training data was of higher quality
compared to DryRun, we believe these results occurred due to the
large difference in the amount of training data between DryRun
and FormalRun.

Table 6: Evaluation Results for TableQA
(Using DryRun Training Data)

Sentence Selection
Method Method Table Segmentation

Search Range ID Accuracy
cell_id value

BM25

Baseline Fixed
(1 row 1 column) 22 0.1326 0.0425

Improved Normalization
and Unit Processing

1-3 31 0.2193 0.2224
1-10 46 0.2529 0.2735

Exclude Empty Cells
from TSS Calculation 1-10 47 0.2501 0.2727

Exclude Empty Cells from TSS
and Text Generation 1-10 48 0.2925 0.3128

BERT Classifier
(JRTEC)

Exclude Empty Cells from TSS
and Text Generation 1-10 64 0.3323 0.3179

BERT Classifier
(U4 Dataset)

Exclude Empty Cells from TSS
and Text Generation 1-10 127 0.7850 0.6871

BERT Classifier
(U4 Dataset)

Two-sentence Generation
at Inference Only 1-10 128 0.7824 0.6834

Table 7: Accuracy Changes in U4 TQA (Comparing Training
Datasets)

Training Dataset Accuracy
cell_id value

DryRun 0.7824 0.6834
FormalRun 0.7016 0.6301

4 Discussion
In this section, we discuss our findings based on the experimental
results from each dataset.

4.1 Table Segmentation and Text Generation
In this research, we performed table segmentation based on TDE
output. However, there are various types of tables in the target data,
not just simple tables [3], such as:

• Tables with headers that modify header sections
• Tables where multiple headers are combined into a single
cell

• Tables where cells contain sentences with multiple pieces of
information

With our current method, tables with special structures due to
merged cells cannot be properly converted to text. We believe that
improving this aspect would enable more accurate text generation.

4.2 TableRetrieval Subtask
In the TableRetrieval subtask, we implemented table search by
”combining sentences for each table and comparing them with
question text using BM25.”

We believe that replacing BM25 with dense vector retrieval meth-
ods such as Transformer-based approaches could potentially yield
higher accuracy.

4.3 TableQA Subtask
Based on the observations in Section 4.1, we believe that improving
the text generation component could lead to more accurate text
generation and selection.

Currently, we use a template ”Xの Yは Zです。” for text gen-
eration. However, this can result in unnatural sentences for certain
types of tables (such as those where data cells contain sentences).
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We believe that incorporating Text-to-Text methods during text
generation could help reduce the generation of unnatural sentences.

5 Conclusions
Using our proposed method, we achieved an accuracy of 0.3287
in the TableRetrieval subtask, while in the TableQA subtask, we
achieved a cell coordinate accuracy of 0.7580 and a value accuracy
of 0.6871. Although the TableRetrieval subtask showed modest
results, in the TableQA subtask, we exceeded the TaskOrganizer’s
GPT-4o results by 0.021.

For future work, we expect to focus on:
• Text generation for tables with complex structures
• Improving the TableRetrieval subtask by incorporating meth-
ods from the TableQA subtask

• Reducing unnatural sentence generation by incorporating
Text-to-Text methods in the text generation process
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