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Abstract
This paper describes the methods, results, and analysis of team
STMK24 for the NTCIR-18 U4 Table Question Answering (TQA)
task. STMK24 approaches TQA as a Visual Document Understand-
ing task, and convert every table into three complementary modali-
ties—image, text, and layout. To simply comprehend the structures
of the tables, our model is trained to infer the cell IDs of the tables,
and the cell values are automatically extracted through rule-based
conversion. We investigated the impact of each modality on Table
QA performance and confirmed that the model achieves high cell
ID inference accuracy when utilizing all modalities.
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1 Introduction
A table is a structured representation of data, and in the business
settings, it is provided in various formats. In the NTCIR-18 U4 task
[5], tables extracted from Japanese securities reports are provided
in HTML format by the Japanese Financial Services Agency. In
this paper, we present our proposed system for the Table Question
Answering (TQA) task of U4, where questions regarding specific
tables and cells are posed, and answers must be generated based
on information contained within those tables.

Tables in business contexts represented in diverse formats such
as HTML, markdown, CSV, images, and even PDF files, which com-
plicates fully automatic processing. With the recent advancements
of Large Vision-Language Models (LVLMs), images and text can
be jointly processed, enabling effective and format-agnostic table
interpretation through the integration of image modality.

In this study, we propose a multimodal approach by modifying
the LVLM architecture to accommodate not only image inputs but
also text and layout modalities. Specifically, we convert HTML
tables into distinct image, text, and layout representations, enabling
our modified LVLM to effectively integrate these modalities for
enhanced table comprehension.

Our experimental results demonstrate the effectiveness of this
multimodal approach, achieving an accuracy of 95.36% in the cell
ID inference task. Furthermore, our modality contribution analysis
reveals the critical roles of layout and textual information, highlight-
ing their importance in accurately understanding and interpreting
tables. This analysis provides valuable insights into the optimal use

of LVLMs for automated table understanding in diverse business
settings.

2 Related Work
Visual document understanding encompasses the extraction and
interpretation of information from document images to answer rel-
evant queries. Within the area of visual document understanding,
Table QA specifically focuses on comprehending tabular informa-
tion contained within documents. Various benchmarks have been
established for assessing performance of the down-streaming tasks
in this field. For instance, DocVQA [10] involves extracting and
understanding textual and visual content from diverse document
images to respond accurately to posed questions. Similarly, datasets
like CORD [11] and FUNSD [4] focus on specialized tasks such
as receipt understanding and form information extraction from
scanned documents, respectively. These datasets leverage multi-
modal information, including visual features, textual content, and
spatial layouts, which are crucial elements for accurate table com-
prehension.

Recent advancements in transformer-based architectures have
further improvedmultimodal document understanding. LayoutLMv3
[3], for example, incorporates visual, textual, and spatial modal-
ities to achieve state-of-the-art results across various document
understanding tasks.

More recently, LVLMs have demonstrated their potential for doc-
ument understanding tasks by leveraging the strong text-processing
capabilities of high-performing LLMs. Models such as LLaVA [7]
and LLaVA-OV [6] have shown promising capabilities in general
multimodal tasks. Specifically, Qwen2-VL [13] has achieved state-
of-the-art performance on the DocVQA benchmark.

LayoutLM[14], on the other hand, is specifically tailored for doc-
ument image understanding. It extends traditional encoder-based
language models by incorporating not only textual content but
also the spatial layout of documents. Based on the Transformer
architecture, LayoutLM integrates token embeddings with 2D posi-
tional embeddings that represent the coordinates of text within a
document. This approach allows the model to capture the structural
information essential for understanding complex documents, such
as forms or receipts. Subsequent versions, like LayoutLMv2[15] and
LayoutLMv3[3], further enhance this capability by incorporating
actual image embeddings alongside text and layout information,
enabling a more comprehensive understanding of documents that
include both textual and visual elements.

Additionally, models that leverage only textual and layout infor-
mation have also been explored. LayTextLLM[8] focuses on inte-
grating textual content with spatial layout information. It achieves
this integration by mapping each bounding box to a single embed-
ding and interleaving it with the corresponding text. This approach
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efficiently addresses sequence length issues and leverages the au-
toregressive traits of large language models (LLMs), enabling ef-
fective document understanding without relying on explicit visual
inputs.

With the advancement of large language models (LLMs) utilizing
Transformer decoders with layout awareness, QA datasets incorpo-
rating layout information have also been proposed. LayoutLLM[1,
9] introduces a QA dataset that leverages document images along
with the text and layout information within them, while also pre-
senting a baseline architecture. The construction of this dataset
has the potential to enhance LLMs’ ability to comprehensively
understand text, layout, and images.

Motivated by these developments, we build upon existing LVLM
frameworks by: (1) adopting an LVLM capable of efficiently pro-
cessing high-resolution images and (2) extending its architecture
to incorporate comprehensive multimodal inputs—including image,
text, and layout information—specifically optimized for the task of
table understanding.

3 Methods
The Table Question Answering (TQA) subtask within the NTCIR-
18 U4 is to extract precise answer values from tables in financial
reports based on given questions. An optional component of this
task involves identifying the specific cell IDs that contain these
answers.

We initially attempted to infer cell values using a VLM but found
it challenging to estimate exact values, as the answers can differ
from the cell contents due to variations in unit descriptions. To
address this issue, cell IDs are instead and corresponding cell values
are retrieved through rule-based conversion.

To integrate cell IDs into a multimodal model that utilizes both
image and layout information, cell IDs are embedded into table
images, as illustrated in Figure 1.

3.1 Data Preparation
Figure 2 illustrates the processing flow for obtaining image (I), text
(T), and layout (L) modalities from HTML tables with inserted cell
IDs. First, the source HTML is segmented into individual tables, and
cell IDs are extracted from each cell’s attributes and embedded into
the HTML content. During this process, a dictionary is generated to
map each cell ID to its corresponding value. To convert the HTML
tables with inserted cell IDs into image and layout modalities, the
tables are rendered as PDFs. From these PDFs, the image, text, and
layout modalities (I, T, L) are extracted, where the layout modality
consists of bounding-box coordinates that define the position of
the text. Finally, an instruction dataset is constructed that provides
cell IDs as answers, aligning with the given QA dataset.

3.2 Model Construction
LVLMs typically accepts only images as input. However, for this
task, the architecture is modified to incorporate text and layout
modalities in addition to images.

Following previous studies such as LayTextLLM [8], layout em-
bedding is achieved by converting bounding box coordinates into
the hidden dimensions of an LLM using a two-layer MLP. The lay-
out is input as a single token in the LLM and paired with the text

Figure 1: Example of cell-id inserted table image

inside the corresponding bounding box, applying this process to all
text within the table. This approach enables the model to process
text while maintaining its spatial correspondence within the table.

In the experiments, different combinations of image, layout, and
text inputs are tested to analyze the contributions of each modality.
To ensure consistency in analysis, all evaluations are conducted
under the same conditions, allowing for a direct comparison of the
impact of each input type.

3.3 Pre-training for Layout Modality
Since the proposed layoutmodality is not present in existing LVLMs,
pre-training is conducted to help the model adapt to this format.
The LayoutLLM-SFT dataset [9] is designed for document-based
QA tasks and includes OCR text and bounding-box coordinates
alongside images and QA data. For experiments involving T+L, the
model is pre-trained using 50% of the LayoutLLM-SFT dataset and
fine-tuned with the Table QA training data.

3.4 Post-processing of Cell Values
Because the model infers cell IDs, converting cell IDs to cell values
is necessary at submission. The dictionary of cell IDs and cell values
mentioned above is insufficient as a format for answers. For exam-
ple, it is necessary to consider converting units such as "million
yen". Therefore, we performed rule-based conversion to obtain cell
values after inferring cell IDs. The HTML of the entire table con-
tains information about units. Additionally, the question includes
information about the required value type (such as amount, number,
or date). Using this information along with a dictionary of cell IDs
and cell values, a rule-based conversion from cell IDs to cell values
is performed.

4 Experiments
In this section, we present the experimental conditions and results
using the data and models described in the previous section.

4.1 Training Conditions
Table 1 shows the conditions of the trained models. The method
in the table shows that I+T+L is when all image, text, and lay-
out are input, T+L is when only text and layout are input, I+T is
when only image and text are input, and I* is when only image
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Figure 2: Overall system architecture

Table 1: Main Experiments for training

Method Description
I+T+L Training with Image, Text and Layout
T+L Training with Text and Layout
I+T Training with Image and Text
I* Training with Image w/o Pre-Training
markdown (T) Rendered Markdown from HTML
json (T) Rendered json from HTML

is input. In addition, training and inference using markdown and
json-converted table text was also performed. All experiments are
based on LLaVA-Onevision-7B[2, 6], and pre-training using the
LayoutLLM-SFT dataset was conducted when including the layout
modality. Training for Table QAwas conducted under the following
conditions: 3 epochs of training, batch size of 8, learning rate of
1e-5, and warmup ratio of 0.03.

4.2 Results
Table 2 presents the comparison results for each modality. Perfor-
mance discussions refer to the private score, while case studies refer
to the public score. The submitted answer corresponds to the I+T+L
modality; however, since the image resolution during inference was
set lower than expected, it is provided as a reference value.

To compare the zero-shot performance of high-performance
multimodal models, we conducted inference using Qwen2.5-VL-
72B [12, 13] and GPT-4o (gpt-4o-2024-08-06).

4.2.1 Comparison of Modalities. The highest accuracy was consis-
tently achieved when all modalities—image (I), text (T), and layout
(L) were utilized simultaneously. Removal of either the image or
layout modality led to a noticeable decrease in performance, espe-
cially pronounced when omitting layout. This demonstrates the
crucial role that layout information plays in accurately interpreting
structured data within tables. The layout modality specifically cap-
tures spatial relationships among table elements, providing critical
context that is not easily inferable from textual or visual inputs
alone.

Further examination of the significance of the layout the layout
reveals specific instances (illustrated in Figure 3) where tof the

Table 2: Comparison of Modalities (accuracy)

Public Private
Method id value id value
submitted 0.9685 0.9163 0.9530 0.8483
I+T+L 0.9693 0.9171 0.9536 0.8483
T+L 0.9747 0.9179 0.9423 0.8433
I+T 0.9632 0.9140 0.9348 0.8408
I* 0.9087 0.8741 0.8840 0.8006
markdown (T) 0.9586 0.9025 0.9448 0.8382
json (T) 0.9586 0.9010 0.9373 0.8332
Qwen2.5-VL-72B ( I ) 0.4996 0.4935 0.5003 0.4721
GPT-4o ( I ) 0.4206 0.4175 0.4188 0.3868

* represents w/o LayoutLLM Pre-training

absence of the layout data rendered the task unsolvable. In this sce-
nario, although explicit (r, c) coordinates were provided within the
text, the lack of spatial positioning details made resolving discrep-
ancies between header cell coordinates and content cells infeasible.
This highlights that positional context from layout data is essen-
tial for precise cell identification. The layout modality effectively
bridges the gap between textual and spatial information, enabling
accurate contextual understanding of table data.

Performance significantly deteriorated under the image-only
condition, particularly for larger tables with smaller textual ele-
ments. This underperformance is attributable to limitations inher-
ent in current LVLM OCR methods, which struggle with text recog-
nition at smaller scales or in crowded visual contexts. It shows the
necessity of enhanced OCR capabilities or supplementary modal-
ities to reliably parse complex visual data. Additionally, future
research might benefit from exploring hybrid approaches that com-
bine image enhancement techniques with multimodal methods to
address this limitation.

Moreover, the high performance achieved using standard textual
representations (markdown and JSON) suggests the significance of
textual modality for structured information extraction. However,
the superior results observed in the combined modality (I+T+L)
compared to text-only representations emphasize the importance
of layout information, showing its effectiveness in capturing gen-
eralized structural insights beyond plain textual formats. Thus,
integrating comprehensive layout data into multimodal approaches
can considerably improve model generalization and robustness.

4.2.2 Performance Comparison with State-of-the-Art Models. We
compared the performance of VQA using Qwen2.5-VL-72B and GPT-
4o. As with other experiments, we conducted a task to infer cell IDs
using table images with inserted cell IDs as input. The modality
was conducted under the I-only condition using only images. The
zero-shot performance of these models was lower than that of all
proposed methods in this study. There was a significant difference
compared to the performance when fine-tuned with images only,
suggesting that task-specific rules and dataset characteristics are
important.

4.2.3 Comparison of Training Data. We investigated the effect
of pre-training using the LayoutLLM-SFT dataset when includ-
ing the Layout modality. Table 3 shows the comparison results of

NTCIR-18: Proceedings of the 18th NTCIR Conference on Evaluation ofInformation Access Technologies, June 10-13, 2025, Tokyo, Japan

491



Figure 3: An example table illustrating discrepancies between
assigned cell identifiers and the visual layout structure.

Table 3: Comparison of Training Data (accuracy)

Public Private
Method id value id value
I+T+L 0.9693 0.9171 0.9536 0.8483
I+T+L w/o LayoutLLM 0.9739 0.9179 0.9599 0.8564

the presence or absence of pre-training using the LayoutLLM-SFT
dataset. When pre-training using the LayoutLLM-SFT dataset was
not performed, higher performance was shown in both Public and
Private. This finding indicates that the generic LVLM’s capability
for comprehending structured visual information may inherently
be sufficient or even preferable for Table QA tasks, rather than
specialized pre-training that could inadvertently constrain model
generalization.

5 Conclusions
In this study, we created models using multimodal information such
as text, image, and layout for the Table QA task. The characteristics
of the modalities showed that the highest accuracy was achieved
when all modalities T, I, and L were used. The contributions of
the modalities showed that text had the highest contribution, fol-
lowed by layout and image in order of performance. The findings
emphasize that accurate structured data extraction benefits sig-
nificantly from incorporating comprehensive spatial and textual
context, suggesting future directions for enhancing multimodal
model architectures in structured data tasks.
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