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‘*:* Introduction |*1* Task Framework

popular LLMs

The Automatic Evaluation of LLMs (AEOLLM) task is a
core task in NTCIR-18

» In recent times, the persistent advancement of LLMs has
sparked a lot of interest.

» However, the rapid advancement of LLMs has introduced a
key challenge 1n the progression of these models
efficiently and effectively evaluating their performance.
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Figure 1: The overall framework of the AEOLLM task.
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» However, existing automatic evaluation methods for LLMs
still have the following limitations: (1) Limited task format.
(2) Limited evaluation criteria.

» Based on these considerations, we propose the NTCIR-18
Automatic Evaluation of LLMs (AEOLLM) task, which: (1)
concentrates on generative tasks, (2) encourages reference-

free evaluation methods. Table 2: NTCIR-18 AEOLLM run statistics.

» To make our task more comprehensive, we set up multiple
types of tasks including dialogue generation, text expansion,
summary generation and non-factoid question answering.
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Table 3: The results from the formal run on the reserved set. Baselines 1, 2, 3, and 4 correspond to direct prompting of ChatGLM3-
6B, Baichuan2-13B, ChatGLM-Pro, and GPT-4o0, respectively. The best result is highlighted in bold.

Team Dry run Formal run Total

KNU 7 2 9
> Accuracy (acc
ISLab 18 21 y (acc)

3
UCLWI 1 1 9 » Kendall's tau (1)
6

PangulR 10 16 » Spearman's Rank
Total 36 12 48 Correlation Coefficient (p)
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Team

Dialogue Generation

dcc

T

P

Text Expansion

dacc

T

p

Summary Generation

acc

T

p

Non-Factoid QA

dacc

T

P

dcc

Overall

T

P

Baselinel
Baseline2
Baseline3

Baseline4
KNUIR

0.5583
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0.4102
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ISLab / / /
UCLWI 0.7756 0.5798 0.6426

PangulR 0.7444 0.5611 0.6091
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» AEOLLM this year received a total of 48 runs from 4 different
teams, showcasing a variety of approaches to evaluating LLMs
across four distinct subtasks: dialogue generation, text expansion,
summary generation, and non-factoid question answering.
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Comparing different methods

» overall, PangulR achieves the best performance in terms of
accuracy (acc), while UCLWI excels in Kendall's Tau (7) and

Spearman's Rank correlation coefficients (p)
» (1) Comparing different methods, overall, PangulR achieved the

best performance 1n terms of accuracy (acc), while UCLWI
excelled in Kendall's Tau (7) and Spearman's Rank correlation
coefficients (p).

» For each subtask, UCLWI excels in all three metrics for Dialogue
Generation and 1n T and p for Story Generation. PangulR
outperforms others i acc for Text Expansion and Non-Factual

QA, and ISLab leads 1n acc for Summary Generation.
» (2) Considering multiple metrics is necessary to provide a more

Comparing different evaluation metrics ,
comprehensive assessment of the performance of a method.

» the results of T and p are almost consistent . , . .
» (3) The Text Expansion dataset is the most challenging, with the

highest acc being only 0.5581. This presents a challenging
scenario for future method optimization.

» Looking ahead, we plan to further extend the AEOLLM task to
better and more comprehensively evaluate LLM:s.

» acc sometimes differs from the results of these two coefficients
Comparing different subtasks
» the Text Expansion dataset is the most challenging

» Dialogue Generation is the easiest of the four tasks
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