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Important Problem: Medically correct, but inappropriate for a chatbot to say

Datasets
Japanese dataset (ja, en, fr)
• 226 Q&A pairs (100 for training and 126 for testing)
• Questions were collected through crowdsourcing and answers were created 

by various chatbots (e.g., GPT4o, ChatGPT, etc.)
• Objective evaluation was done by a specialist and subjective evaluation was 

done through crowdsourcing
German dataset (de, en, fr)
• 212 Q&A pairs (100 for training and 112 for testing)
• All Qs pertain to nephrology and were curated by nephrology specialists

About MedNLP-CHAT Task
To determine whether a chatbot’s answer to a medical question is 
appropriate from multiple perspectives

INPUT: A pair of a patient’s question and a chatbot answer
OUTPUT:
• Objective evaluation by a specialist: Binary class, “risk” (1) and “no risk” (0)

Medical risk, Ethical risk, and Legal risk
• Subjective evaluation by the general public (Japanese dataset only): 

A probability distribution of evaluations on a 5-point scale, “very non-
fluent”(-2) to “very fluent” (+2)

Fluency, Helpfulness, and Harmlessness

Each Team’s Approaches

Results 
The best-performing system from each team based on macro F1 score and joint accuracy score
BASELINEs refer to GPT-4o in zero/few/10-shot settings, respectively

Team LLM(s) Used Methods
AITOK GPT-3.5 Turbo (baseline), 

GPT-4o (proposed)
Two types of LLMs used

IMNTPU GPT-4o, Claude 3.5 Sonnet, Gemini 
1.5 Flash, Mistral Small Latest

Zero-shot and 3-shot prompts

NAISTym Gemini-1.5-Flash, GPT-4o Chain-of-thought and few-shot prompts
TMU2025 ClinicalBERT (same size as BERT-

base)
Transformer-based neural classifier 
(6 transformer blocks) for word embeddings

TMUNLPG2 BERT-based classification system 
(bert-base-japanese-v3, japanese-
sentiment-analysis), Llama3.1-8B for 
data augmentation (DA)

BERT-based classification and LLM for 
data augmentation

TUSNLP JMedRoBERTa (encoder model), 
GPT-3.5, GPT-4-mini (decoder 
models), Llama3.1-8B for DA

Back-translation, data summarization via 
ChatGPT, Manbyo Dictionary for medical 
terms, Wikipedia articles for RAG

UEM24 No LLMs used Pre-processing (tokenization, n-gram 
extraction, lemmatization), Logistic 
Regression (LR), combination of two 
datasets via English language

UPxSocio Gemini-1.5-Flash Similarity-based RAG with k-nearest and 
k-spread strategies, few-shot prompting 
(generate support statement, predicted risk)

UTSolve BioBERT v1.1, MedBERT, 
ClinicalBERT

Fine-tuning of BioBERT, evaluation of 
MedBERT and ClinicalBERT models

Discussions
• Legacy Machine Learning V.S. LLMs: While LLMs dominate current

NLP tasks, classical methods still represent viable, resource-efficient
alternatives to LLMs in certain scenarios

• Difficulty of thee risks: Medical risk is the most challenging category
due to the complexity and variability of clinical contexts, requiring
nuanced reasoning and domain-specific knowledge

• Contribution of data augmentation (DA): DA proved effective in
addressing data imbalance, especially in ethical and legal risks, by
enhancing model robustness and offering a competitive edge without
relying on large models or extensive external resources

Japanese Subtask German Subtask


