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Abstract

x3We propose an innovative approach for multi-specialty
retrieval in question answering systems by integrating di-
verse similarity measures through ensemble learning. Tra-
ditional machine reading comprehension methods strug-
gle to accurately capture specialty-specific terminology and
semantic nuances due to their reliance on generic mod-
els. Our framework addresses this challenge by leverag-
ing multiple pre-trained embedding models tailored specif-
ically for Chinese, English, and financial texts, combined
with various similarity metrics, including cosine similar-
ity, modified Euclidean similarity, and modified Manhat-
tan similarity. The core novelty of our framework lies in
effectively combining these domain-specific embeddings
and diverse similarity metrics through both unsupervised
and supervised ensemble strategies, enabling robust rel-
evance prediction across heterogeneous contexts. Exten-
sive experiments on domain-specific and challenging cross-
specialty datasets demonstrate significant improvements
in accuracy, F1-score, and precision compared to single-
embedding and single metric baselines.

1. Introduction

Recent advances in deep learning and large language mod-
els (LLMs) have significantly enhanced question-answering
(QA) systems. Traditional Machine Reading Comprehen-
sion (MRC) methods often depend on large, parameter-
intensive models, yet they frequently struggle to cap-
ture nuanced semantic information unique to specialized
fields such as finance, healthcare, and multilingual content.
Retrieval-Augmented Generation (RAG) has emerged as
an effective alternative by supplementing generative mod-
els with externally retrieved information, thereby enhancing
accuracy and comprehensiveness.
Despite these advancements, designing an efficient re-
trieval module for multi-specialty applications remains chal-
lenging. Each specialty possesses distinct terminolo-
gies, stylistic conventions, and data distributions, caus-
ing embedding models optimized for one specialty to sub-
optimized when applied to another. Each specialty-specific
embedding model inherently exhibits unique strengths and
weaknesses, making it difficult to select a universally opti-
mal solution.
To overcome these limitations, we propose an ensemble-
based approach that strategically integrates multiple
domain-specific embedding models with diverse similar-
ity metrics—cosine similarity, modified Euclidean similar-
ity, and modified Manhattan similarity. By combining these
embeddings and metrics through both unsupervised and
supervised ensemble techniques, our approach effectively
leverages their complementary strengths, enhancing re-
trieval robustness even under resource-constrained scenar-
ios.

2. Dataset

2.1 Training Data
To capture specialty-specific characteristics across Chi-
nese, English, and financial texts, we aggregated several
publicly available QA datasets into a unified corpus. This
unified approach allows our retrieval classification models
to learn from diverse specialty-specific contexts.

2.2 Testing Data
The testing set consists of five datasets, each targeting dif-
ferent specialties and evaluation aspects.

3. Experiment

3.1 Similarity Method
1. Cosine Similarity
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2. Modified Euclidean Similarity
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3. Modified Manhattan Similarity
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3.2 Embedding Models
1. Chinese Specialty : Yuan-embedding-1.0
2. English Specialty : all-MiniLM-L6-v2
3. Finance Specialty : finance-embeddings-investopedia

3.3 Model Architecture

4. Result

Figure 1 : Comparing Ensemble Models to Baselines
Using Cosine Similarity

Figure 1 demonstrates that, regardless of the ensemble
architecture—K-Means, Random Forest, or MLP—the ac-
curacy measured by cosine similarity remains consistently
high across all models.

Figure 2 : Comparing Similarities Across Datasets in Vari-
ous Embedding Models

Figure 2 shows that cosine similarity is the most broadly
effective metric across all the ensemble models we eval-
uated. In contrast, Modified Euclidean similarity shines
specifically within the K-means clustering framework, while
Modified Manhattan similarity delivers its strongest perfor-
mance when paired with the Random Forest model.

Figure 3 : Comparing Similarities Across Datasets in Vari-
ous Embedding Models

In Figure 3, values displayed in boldface identify the
highest-performing metric within each specific dataset-
model pairing, whereas underlined values highlight the best
overall performance achieved on a given dataset across all
models.

Figure 4 : Comparing Similarities Across Datasets in Vari-
ous Embedding Models

Figure 4 illustrates that green points represent true label
and red points denote false; unlike the baseline, in which
both classes cluster around the 0.7 similarity cutoff, our
method yields a far cleaner separation, concentrating true
instances well above the threshold while relegating false
ones to lower-confidence regions.
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