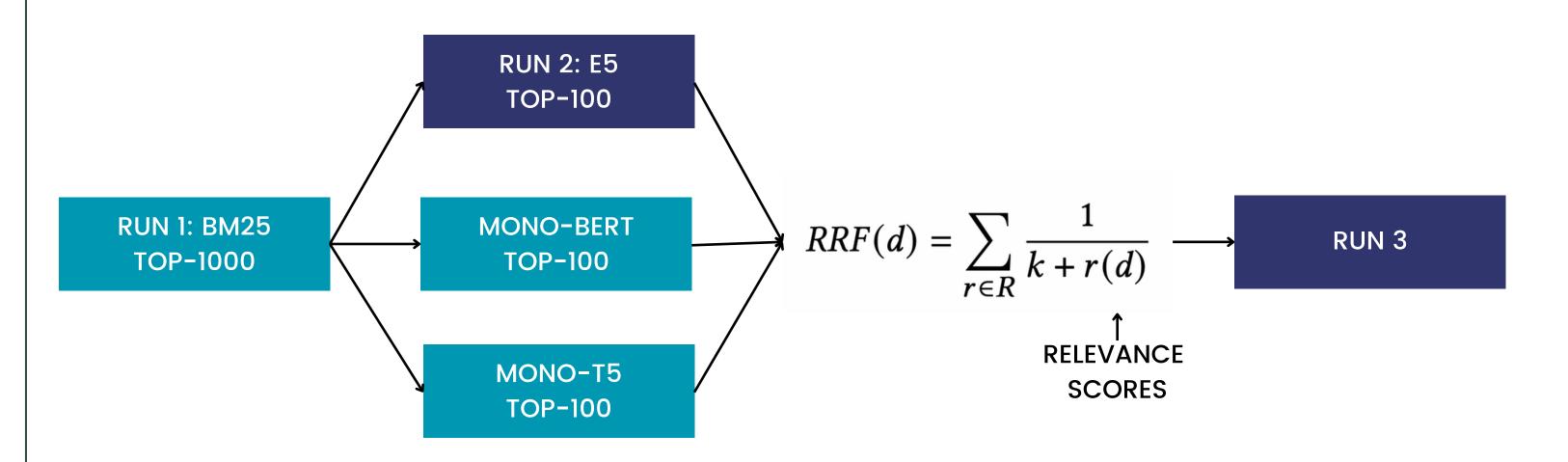
AMS42 at the NTCIR-18 FairWeb-2 Task

Clara Rus, Jasmin Kareem, Chen Xu, Yuanna Liu, Zhirui Deng, Maria Heuss c.a.rus @uva.nl. (1)University of Amsterdam, (2)Renmin University of China, (3)Jheronimus Academy of Data Science

OVERVIEW OF RUNS (QUERY+DESCRIPTION) TASK OVERVIEW

ChuWeb 21D Web Page Collection

II I—	,
	,
기 나	


QUERY TOPICS

RUN 1: BM25 + QUERY**EXPANSION**

Query Expansion applied per topic:

Movies:

RUN 2&3: FOCUSING ON RELEVANCE

Q QUERY + DESCRIPTION

<movie/movies> on IMDb

Researcher: <researchers/authors/coauthors> on Google Scholar

YouTube: <video/videos> - YouTube

RUN 4: IMPROVED MMR

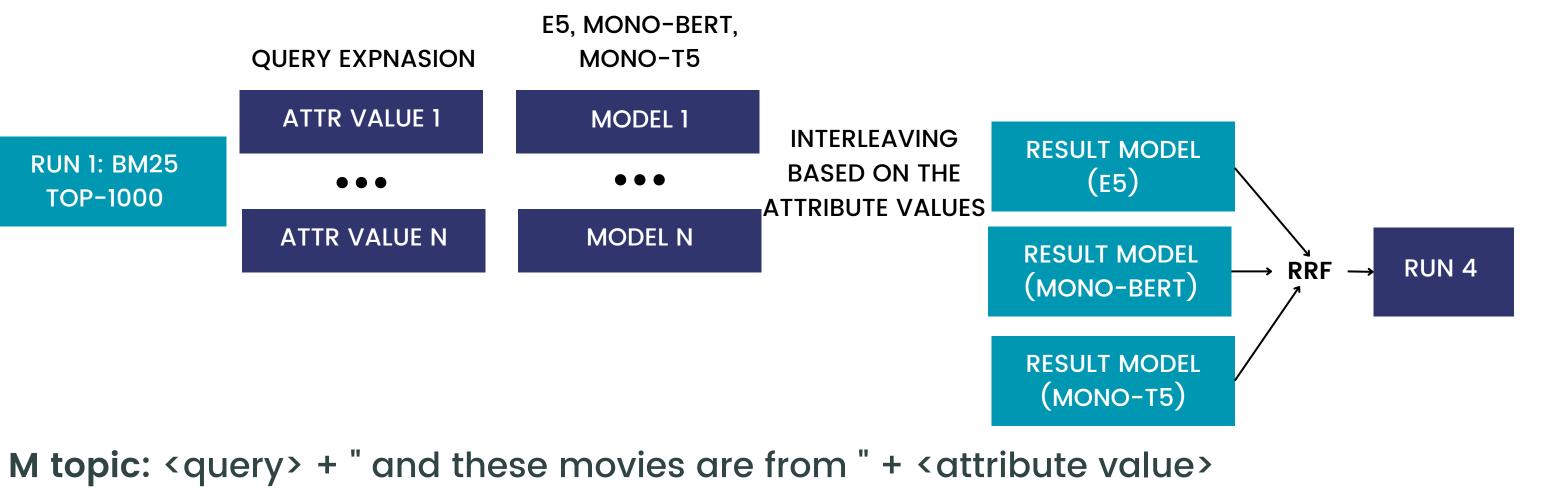
X

Step 1: Estimation of Sensitive Attributes

Movies: Extracted movie name from title and searched on IMDb.

Researchers: Used Scholarly API to get first author via document title and their information (h-index, name); gender estimated from name.

YouTube: Extracted title before "- YouTube" and searched on YouTube. Step 2: Apply MMR on RUN 2


MMR selects a document *d* that maximizes the following objective function:

 $MMR(d) = \lambda \cdot r(q, d) + (1 - \lambda) \cdot f(S(d))$

According to the evaluation metrics in the task requirements: Jensen-Shannon Divergence (JSD) and Root Normalized Order-aware Divergence (RNOD), MMR is adapted to optimize for:

f(S(d)) = JSD(S(d), G) + RNOD(s(d), G),

RUN 5: FUSION + QUERY EXPANSION WITH SENSITIVE ATTRIBUTES

R topic: <attribute value> + <researchers/authors/coauthors> Y topic: None, as it is applied only for non-ordinal sensitive attributes

FAIRNESS RESULTS

Fairness Evaluation for Movie Topics								
Run	Mean GF ^{JSD} (ORIGIN)	Mean GF ^{NMD} (RATINGS)	Mean GF ^{RNOD} (RATINGS)	Mean GFR				
AMS42-WS-QD-RG-1	0.2096	0.2329	0.2151	0.2235				
AMS42-WS-QD-RG-2	0.4195 (>23)	0.4848 (>23)	0.4411 (>23)	0.4681 (>23)				
AMS42-WS-QD-RG-3	0.3317 (>23)	0.3699 (>23)	0.3340 (>23)	0.3657 (>23)				
AMS42-WS-QD-RG-4	0.4491 (>23)	0.5029 (>22-23)	0.4644 (>22-23)	0.4877 (>22-23)				
AMS42-WS-QD-RG-5	0.3535 (>23)	0.3897 (>23)	0.3577 (>23)	0.3820 (>23)				
Top 5 GFR of other te	ams runs							
RSLFW-WS-QD-RG-3	0.4474 (>23)	0.5207 (>22-23)	0.4496 (>23)	0.5101 (>22-23)				
RSLFW-WS-QD-RG-4	0.4465 (>23)	0.5110 (>22-23)	0.4464 (>23)	0.5044 (>22-23)				
RSLFW-WS-QD-RR-2	0.4193 (>23)	0.5036 (>22-23)	0.4424 (>23)	0.4860 (>22-23)				
RSLFW-WS-QD-RR-1	0.4176 (>23)	0.5006 (>22-23)	0.4409 (>23)	0.4835 (>22-23)				
THUIR-WS-QD-REV-1	0.4034 (>23)	0.4973 (>22-23)	0.4437 (>23)	0.4758 (>22-23)				

Fairness Evaluation for YouTube Topics							
Run	Mean GF ^{NMD} (SUBSCS)	Mean GF ^{RNOD} (SUBSCS)	Mean GFR				
AMS42-WS-QD-RG-1	0.0631	0.0560	0.0690				
AMS42-WS-QD-RG-2	0.0645	0.0580	0.0715				
AMS42-WS-QD-RG-3	0.0592	0.0502	0.0662				
AMS42-WS-QD-RG-4	0.0680	0.0635	0.0741				
AMS42-WS-QD-RG-5	G-5 0.0592 0.0502		0.0662				
Top 5 GFR of other to	eams runs						
ORG-WS-run.qljm.Q	0.2659 (>23)	0.2526 (>20-23)	0.2775 (>21-23)				
THUIR-WS-QD-RR-5	0.2484 (>23)	0.2401 (>23)	0.2531 (>23)				
THUIR-WS-QD-RR-3	0.2407 (>23)	0.2322 (>23)	0.2437 (>23)				
ORG-WS-run.bm25.Q	0.2367	0.2240	0.2368				
THUIR-WS-QD-RR-1	0.2247	0.2153	0.2335				

Run	M t	opics	Y to	opics	All to	opics
Rum	Mean ERR	Mean iRBU	Mean ERR	Mean iRBU	Mean ERR	Mean iRBU
AMS42-WS-QD-RG-1	0.0727	0.2460	0.0527	0.0821	0.0715	0.1817
AMS42-WS-QD-RG-2	0.2027	0.5437	0.0567	0.0851	0.1128 (>23)	0.2840 (>23)
AMS42-WS-QD-RG-3	0.1800	0.4314	0.0610	0.0823	0.1142 (>23)	0.2586 (>23)
AMS42-WS-QD-RG-4	0.1771	0.5497	0.0473	0.0847	0.0981 (>23)	0.2897 (>23)
AMS42-WS-QD-RG-5	0.1640	0.4349	0.0610	0.0823	0.0999 (>23)	0.2608 (>23)
Top 5 relevance of oth	ner teams ru	ns				
RSLFW-WS-QD-RG-3	0.2700	0.6332	0.1191	0.2540	0.2020 (>12-23)	0.4556 (>15-23)
RSLFW-WS-QD-RG-4	0.2532	0.6204	0.1176	0.2340	0.1965(>12-23)	0.4434(>16-23)
RSLFW-WS-QD-RR-2	0.2523	0.5964	0.0939	0.2420	0.1942(>13-23)	0.4613 (>15-23)
RSLFW-WS-QD-RR-1	0.2506	0.5919	0.0912	0.2039	0.1931(>14-23)	0.4453 (>16-23)
THUIR-WS-QD-REV-1	0.2367	0.5804	0.0636	0.2327	0.1807 (>18-23)	0.4365 (>17-23)

CHALLENGES

- Noisiness in the estimated sensitive attribute
- \rightarrow Difficulty in applying fairness interventions Solution: Query expansion with sensitive attribute values Limitation: It does not work for numerical attribute values (e.g. n of subscribers)
- \rightarrow Difficulty in fairness evaluation
 - it is difficult to determine why certain approaches outperform others

Solution: separating the evaluation of the estimation of attributes and the outcome of the

RELEVANCE RESULTS

CONCLUSION

- Overall, higher performance leads to higher fairness.
- RUN 4&5 improved fairness across all topics in comparison with the other RUNS focused only on extracting relevant documents.
- Best results obtained on M (Movies) topic, while worst results are on Y (YouTube) topic. The dataset did not always contain clear links to actual YouTube videos, as opposed to IMDb pages.

fairness approach

• Without first extracting relevant documents – estimating the sensitive attributes is not possible

E.g. if the document is somehow relevant to the query but it does not contain a YouTube video, one can't assess the sensitive attribute of this document

REFERENCES

[1] Jaime Carbonell and Jade Goldstein. 1998. The use of MMR, diversity-based reranking for reordering documents and producing summaries. In Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval. 335–336.

[2] Gordon V Cormack, Charles LA Clarke, and Stefan Buettcher. 2009. Reciprocal rank fusion outperforms condorcet and individual rank learning methods. In Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval. 758–759.

[3] Sijie Tao, Tetsuya Sakai, Junjie Wang, Hanpei Fang, Yuxiang Zhang, Haitao Li, Yiteng Tu, Nuo Chen, and Maria Maistro. 2025. Overview of the NTCIR-18 FairWeb-2 Task. In Proceedings of the 18th NTCIR Conference on Evaluation of Information Access Technologies.

