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Noisiness in the estimated sensitive attribute
      → Difficulty in applying fairness interventions 
          Solution: Query expansion with sensitive attribute values
          Limitation: It does not work for numerical attribute values (e.g. n of subscribers)
       
      → Difficulty in fairness evaluation 
          – it is difficult to determine why certain approaches outperform others

Without first extracting relevant documents – estimating the sensitive attributes is not
possible

Solution: separating the evaluation of the estimation of attributes and the outcome of the
fairness approach

     

 E.g. if the document is somehow relevant to the query but it does not contain a YouTube video, one can’t
assess the sensitive attribute of this document 
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Query Expansion applied per topic:
 
Movies: 
<movie/movies> on IMDb

Researcher:
<researchers/authors/coauthors> on
Google Scholar

 YouTube: <video/videos> - YouTube

RUN 4: IMPROVED MMR RUN 5: FUSION + QUERY EXPANSION WITH
SENSITIVE ATTRIBUTES
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QUERY TOPICS

QUERY + DESCRIPTION

ChuWeb 21D Web Page Collection

MMR selects a document 𝑑 that
maximizes the following objective
function:

According to the evaluation metrics in the
task requirements: Jensen-Shannon
Divergence (JSD) and Root Normalized
Order-aware Divergence (RNOD), MMR is
adapted to optimize for:

Step 1: Estimation of Sensitive Attributes

Movies: Extracted movie name from title
and searched on IMDb.
 
Researchers: Used Scholarly API to get
first author via document title and their
information (h-index, name); gender
estimated from name.

YouTube: Extracted title before 
“- YouTube” and searched on YouTube.

Step 2: Apply MMR on RUN 2

M topic: <query> + " and these movies are from " + <attribute value>
R topic: <attribute value> + <researchers/authors/coauthors>
Y topic: None, as it is applied only for non-ordinal sensitive attributes

Overall, higher performance leads to higher fairness.

RUN 4&5 improved fairness across all topics in comparison with the other RUNS
focused only on extracting relevant documents.

Best results obtained on M (Movies) topic, while worst results are on Y
(YouTube) topic. The dataset did not always contain clear links to actual
YouTube videos, as opposed to IMDb pages.  
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