

KNUIR at the NTCIR-18 AEOLLM: Automatic Evaluation of LLMs

Yumi Kim¹, Meen Chul Kim², and Jongwook Lee^{1,*}

¹ Department of Library & Information Science, Kyungpook National University (KNU), 80 Daehak-ro, Buk-gu, Daegu, Republic of Korea ² Children's Hospital of Philadelphia, 3401 Civic Center Blvd. Philadelphia, U.S.A.

*Corresponding author: jongwook@knu.ac.kr

Abstract

This study explores automated evaluation methods for large language models (LLMs) that approximate human judgment, comparing two distinct approaches: (1) LLM-based scoring using GPT models with prompt engineering, and (2) feature-based machine learning using transformer-based metrics such as BERTScore, semantic similarity, and keyword coverage. As part of this research, we participated in the NTCIR-18 Automatic Evaluation of LLMs (AEOLLM) task, submitting predictions for both the test and reserved datasets and analyzing the evaluation results. The results show that GPT-40 Mini with updated prompting achieved the highest performance. The feature-based approach performed competitively, outperforming GPT-3.5 Turbo and showing only a small gap with GPT-40 Mini. LLM-based methods offered scalability but lacked explainability, while feature-based approaches provided greater interpretability but required extensive tuning, illustrating the trade-offs between the two strategies. We hope our findings contribute to a deeper understanding of human judgment and support the development of more effective automated evaluation methods for LLMs.

Research Motivation & Objectives

As large language models (LLMs) continue to evolve, there is a growing need for *automated evaluation methods* that are both scalable and aligned wit *h human judgment*, the gold standard for quality assessment, yet *costly and time-consuming* to apply at scale.

This study compares *LLM-based scoring* and *feature-based machine learning* approaches to understand:

- How well each aligns with human evaluations across different task types
- What trade-offs exist between scalability, interpretability, and performance
- Which approach (or combination) may offer the most reliable, efficient evaluation framework for future LLMs

Mathadalaay	
Wethodology	

LLM-based Approach

- Utilized GPT models (GPT-3.5 Turbo and GPT-40 Mini) to predict human evaluation scores.
- Designed task-specific prompts to instruct the models to score responses on a 5-point scale.
- Conducted prompt engineering to improve alignment with human judgment:
 - Incorporated *dataset descriptions* to provide contextual grounding.
 - Updated prompts included explicit evaluation criteria (Relevance, Conciseness, Clarity, Accuracy)
- Feature-based Approach
- Utilizes machine learning models trained on features extracted from LLM-generated responses.
- Extracted features reflect quality dimensions such as:
 - Semantic similarity
 - Factual correctness
 - Fluency
 - Coherence
- A common set of core features, including BERTScore, semantic similarity, and keyword coverage, was applied across all tasks.

Extracted	features	for	each task	

Task	Features		
Summary Gen- eration (SG)	BERTScore, Semantic Similarity Score, Keyword Coverage Score, Topic Similar- ity Score, Fact Extraction Score		
Non-Factoid QA (NFQA)	BERTScore, Semantic Similarity Score, Keyword Coverage Score, Topic Similar- ity Score, Fact Extraction Score		
Text Expansion (TE)	BERTScore, Semantic Similarity Score, Keyword Coverage Score , Grammar Error Rate, Coherence Score, Lexical Diversity		
Dialogue Gen- eration (DG)	BERTScore, Semantic Similarity Score, Keyword Coverage Score, DialoGPT Score, Sentiment Alignment Score, Intent Alignment Score		

Compared base and updated prompts to analyze the effectiveness of prompt engineering across tasks.

Results

Dry Run Results (Test Dataset)

No	Methods	Accuracy	Kendall's Tau	Spearman
0	GPT-3.5 Turbo with base prompt (LLM-based apporach)	0.5846	0.3554	0.3824
1	GPT-3.5 Turbo with updated prompt (LLM-based apporach)	0.6246	0.3717	0.3987
2	GPT-40 Mini with updated prompt (LLM-based apporach)	0.6710	0.4412	0.4730
3	Feature-based approach	0.6416	0.4294	0.4535

GPT-40 Mini(LLM-based approach) achieved the highest average scores.

Feature-based approach performed comparably to GPT-40 Mini and <u>outperformed</u> GPT-3.5 Turbo. Formal Run Results (Reserved Dataset)

Task	Accuracy	Kendall's Tau	Spearman	
Overall	0.6654	0.4043	0.4340	
Dialogue Generation	0.6778	0.4404	0.4717	
Text Expansion	0.5512	0.3141	0.3430	
Summary Generation	0.7375	0.4524	0.4914	
Non-Factoid QA	0.6951	0.4102	0.4297	

Comparative Analysis and Insights

[LLM-based scoring]

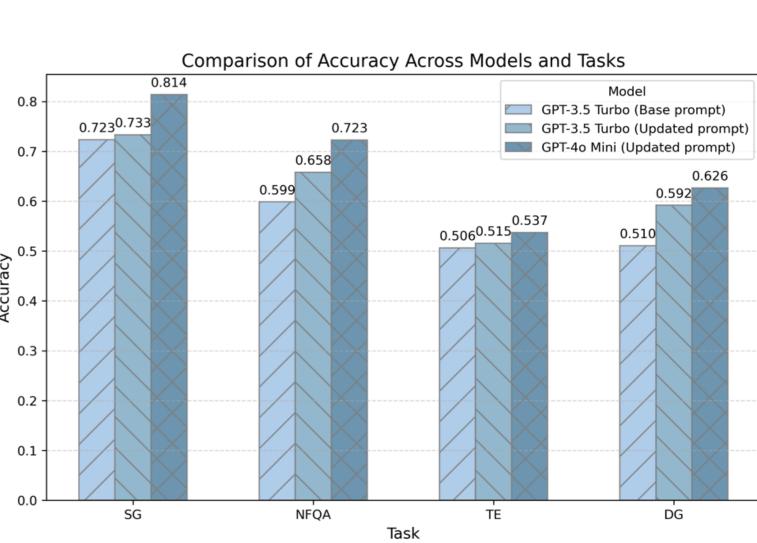
Additionally, task-specific features were selected to capture the unique characteristics of each evaluation task.

Key Findings

LLM-based

- **Prompt engineering** improved performance in some tasks (e.g., NFQA, DG).
- Model capability had a greater effect than prompt variation (GPT-40 Mini > GPT-3.5 Turbo).
- GPT-40 Mini showed the highest alignment with human judgment, especially in SG.
- LLMs still struggle with creative or dialoguebased tasks (TE, DG).
- Feature-based
 - Performed well on *structured tasks* such as summarization and QA.
 - Weaker performance on open-ended or conversational tasks.
- A viable alternative to LLMs for evaluating structured outputs.

[Feature-based machine learning]



- Directly mimics human evaluation by generating scores in a similar way to human annotators.

Structured tasks (e.g., SG, NFQA) are

better handled by LLM-based evaluators.

Creative tasks like TE remain more

challenging for automated evaluation.

- *Fast* and scalable: LLMs can evaluate text without the need for manual feature extraction.
- Adaptable via prompt engineering, allowing flexibility in evaluation criteria.
- **Requires no labeled training data**, making it useful in scenarios with limited annotations.
- [LLM-based scoring]
- Less explainable.
- Prompt sensitivity.
- Expensive for large-scale evaluation, as querying LLMs can be costly.
- May not be fully aligned with human judgment.

- - **Transparent and explainable**, as individual features can be analyzed.
 - More stable and reproducible.
 - More fine-grained control: different features can be weighted to improve performance.

Potentially *more cost-effective* after training, since it does not require querying an API like OpenAl's models

[Feature-based machine learning]

- Feature engineering requires effort.
- Limited adaptability.
- Requires labeled training data (dependent on human-annotated scores for supervised learning).
- Computational overhead: training models on extracted features requires additional resources.

Summary

This study provides a comprehensive comparison of LLM-based and feature-based evaluation methods across both structured and open-ended tasks, highlighting their respective strengths and limitations. We also propose a feature-based evaluation framework as a cost-effective and interpretable alternative to LLM-based scoring—especially useful in resource-constrained or model-agnostic evaluation scenarios.