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Abstract
Risk prediction in
healthcare con-
versations is vital
for safety and
compliance. We
developed machine
learning models
to detect medical,
legal, and ethical
risks from multilin-
gual patient-doctor
interactions. Using
translated datasets,
we applied text
preprocessing and
trained models
for classification
and regression
to support safer
healthcare commu-
nication.

Motivation
1.Limited and
imbalanced multi-
lingual healthcare
data challenges
accurate risk de-
tection.
2.Lack of sub-
jective labels in
Task2 complicates
reliable quality
assessment.
3.Complex medical
language and po-
tential annotation
biases demand ro-
bust preprocessing
and modeling.

Objective
1.Classify ob-
jective risks
(TRUE/FALSE) and
predict subjective
scores (fluency,
helpfulness, harm-
lessness).
2.Address multi-
lingual, domain-
specific challenges
with robust models
for limited, imbal-
anced data.
3.Provide reliable
risk assessment to
enhance patient
safety and compli-
ance.

Dataset
1.Combined Task1
& Task2 (100 sam-
ples each), total 200
QA pairs with ob-
jective risk labels:
medicalRisk, ethi-
calRisk, legalRisk.
2.Task1 has subjec-
tive scores (fluency,
helpfulness, harm-
lessness) from 79
annotators on a -2
to +2 scale, stored
as distributions.
3.Task2 lacks
subjective scores;
predicted using
regressors trained
on Task1 (Gra-
dient Boosting,
XGBoost).
4.Final dataset
merges both with
objective and sub-
jective labels.

Preprocessing
1.Lowercasing, spe-
cial characters and
punctuation removal
2.Tokenization,
stopword removal,
lemmatization
3.CountVectorizer
(1–3 grams, 5000
features)

Models
Task1:
1.Medical & Ethi-
cal Risks: Logistic
Regression—simple
and effective for
binary classification.
2.Legal Risk:
Nu-SVC
(nu=0.1)—better
handling of class
imbalance.
3.Subjective
Scores:
i)Fluency & Help-
fulness: Gradient
Boosting
ii)Harmlessness:
XGBoost
Task2:
1.Medical Risk:
Logistic Regression
2.Legal & Ethi-
cal Risks: Nu-SVC
(nu=0.1)
3.Subjective scores
predicted using
Task1 regressors

System Architecture

Figure 1: Pipeline of the proposed system

Task1 Results
Objective Labels:
Label Acc Prec Rec F1
Medical 0.595 0.557 0.531 0.500
Legal 0.786 0.423 0.458 0.440
Ethical 0.897 0.585 0.595 0.590
Subjective Scores (EMD):

Fluency: 0.012
Helpfulness: 0.018
Harmlessness: 0.016

Task2 Results
Label Acc Prec Rec F1
Medical 0.634 0.612 0.596 0.594
Legal 0.750 0.700 0.646 0.658
Ethical 0.625 0.620 0.625 0.619

Discussion & Conclusion
1.Logistic Regression and Nu-SVC
performed well for different risks.
2.Subjective scores predicted accu-
rately, especially fluency.
3.Some overfitting in Task1; overall
strong ML results.
4.Future work: deep learning, better
balance, and more features.
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