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◼ The advancements in LLMs have paved the way for cross-modal information 
processing, enabling interactions across various modalities, including text, 
images, and audio.
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Association information

How to make associations 
between data from different modalities.

Image data Sensor data

Approach 1:
Search engine

Approach 2:
Human worker

Approach 1: Inability to target diverse modalities
Approach 2: time-consuming, costly, and error prone

Cross-modal info. access
construction flow

◼ While large text and image corpora exist (e.g., Microsoft COCO and Flickr30k), 
they often lack corresponding data from other modalities, limiting their utility in 
developing robust cross-modal information access technologies. 
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◼ We introduce a dense retrieval method for retrieving relevant data across multiple 
modalities.

◼ In our approach, image and sensor data are projected into this shared vector space 
using modality-specific encoders.

Contrastive learning for dense retrieval

Background

Positive sample: A relevant image to sensor query

Negative samples: Set of irrelevant image to the query 

◼ Dense retrieval training tends to benefit from a larger set of hard negatives and in-
batch negatives.

◼ In our task, positive (relevant) and hard negative (irrelevant) samples are not directly 
available.

◼ Therefore, it is necessary to extract an appropriate set of hard negative samples and 
positive sample.

…

◼ The experimental evaluation utilizes LSC’24 dataset, which is a multi-modal dataset 
capturing users’ daily activities.

◼ The dataset consists of images captured by egocentric camera and sensor data by a 
smart tracker.

Image
Encoder

◼ Linearly transformed 
3  x 224 x 224.

◼ Two Resnet50 pretrained  
by ImageNet/Places365

Sensor
Encoder

◼ Normalized to 
avg. 0 and s.d. 1.

◼ Two MLP layers.

# dense 
dimentions

512

Mini-batch 256

Optimizer Adam

# Iterations 100, 200, 500

Evaluation 
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Details of the experimental dataset

Examples of created topics Experimental setup

Official Results (evaluated by Mean Reciprocal Rank)

Our methods

MZG-IMG Image augmentation-based

MZG-SEN Sensor augmentation-based

YNZ-0.6-500
Object detection with threshold 
α=0.6, trained for 500 epochs

YMZ-0.9-500
Object detection with threshold 
α=0.9, trained for 500 epochs

Monthly DMR evaluation results

Our Task

Method
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Multi modal LLM can handle multiple modalities.
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What color is the 
banana?

Image Question

Yellow
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Visual Question Answering (VQA)

Data augmentation-based approach Object detection-based approach

No Aug Horizontal Flip Erasing Clop + Reseize Rotation

Image data augmentation

Sensor data augmentation

YOLO v11
Bag of Object 

features
[0, 0, 1, …, 0]

ResNet
(pretrained by 

ImageNet)

ResNet
(pretrained by 

Places365)

Dense Layer

Dense Layer [0.0, -0.1, …, 0.9]

Dense vector

Split Period # Data Points # Days

Training Jan. 01, 2020 ~ Feb. 29, 2020 27,907 60

Validation Mar. 01, 2020 ~ Mar. 16, 2020 21,198 16
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