SMM at the NTCIR-18 U4 Task

Yukihiro Seito Keio University

Team: SMM

Tasks: Table Retrieval (Japanese), Table Question Answering (Japanese)

1. Abstract

- Hybrid Table Retrieval (TR):
- Single-Vector (Global Semantics)
- Cell-Level Multi-Vector (Local Details)
- Effective Table Question Answering (TQA) with Cell ID Estimator:
- T5 for candidate generation
- Cell ID Estimator for evidence-based selection
- High Performance:
- − TR Acc: ~97.6%

TR: Cross-Encoder Reranker

- **Model:** 'hotchpotch/japanese-reranker-cross-encoder-base-v1'
- **Objective:** Refine Top-10 candidates from TR hybrid retrieval.
- Input: (Query, Table Content) pairs.
- **Output:** 3-class (Pos/Neg/HardNeg) Softmax score.
- Training: Hard Negatives from high-scoring incorrect examples from hybrid retrieval. Cross-Entropy Loss.

-TQA Value Acc: \sim 86% (Pub) / \sim 82% (Priv)

Keywords: Information Retrieval, Question Answering, Tabular Data, Financial Reports

2. Task Overview: NTCIR-18 U4

Challenge: Automated information extraction from Japanese annual securities reports.

- Table Retrieval (TR): Query \rightarrow Most relevant table.
- Table Question Answering (TQA): Query + Table \rightarrow Precise answer (value & cell ID).

Our Goal: High-accuracy system considering table structure & cell-level info.

3. Table Retrieval (TR) Method

Pipeline: Query \rightarrow Hybrid Retrievers \rightarrow Top 10 \rightarrow Reranker \rightarrow Final Table

4. Table Question Answering (TQA) Method

Pipeline: Query + Table \rightarrow T5 Candidates \rightarrow Cell ID Estimator \rightarrow Final Answer

TQA Pipeline Diagram

Two-Stage Approach:

(1) T5 for Candidate Generation

• **Model:** 'retrieva-jp/t5-base-long'

• Input Format for T5: Linearized table with structural markers.

|Query|Table Title|cell1_row1,cell2_row1,...|cell1_row2,cell2_row2,...|... (and so on for all relevant rows)|

• **Output:** Multiple diverse answer candidates (Beam Search).

(2) Cell ID Estimator

Table Collection Selected Table

TR Pipeline Diagram

Hybrid Retrieval Strategy:

(1) Single-Vector (Global Semantics)

• **Model:** 'pkshatech/GLuCoSE-base-ja'

• **Representation:** Avg. BERT hidden states of concatenated cell text.

$$\mathbf{v}_{\mathsf{table}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{h}$$

• Similarity: Cosine Similarity.

 $S_{\text{single}} = \sin(\mathbf{q}, \mathbf{v}_{\text{table}})$

• Training: Iterative Negative Re-mining [3]

– Initial: BM25 Hard Negatives.

- Iterative: Add top-k False Positives (from self & Multi-Vector) as new Hard Negatives.

(2) Cell-Multi-Vector (Local Details)

- **Model:** 'pkshatech/GLuCoSE-base-ja'
- **Representation:** Each cell as independent vector.
- Similarity: Query-cell similarities + LogSumExp Aggregation (τ =20).

$$S_{\text{multi}} = \frac{1}{\tau} \log \sum_{j} \exp(\tau \cdot s_j)$$

• Training: In-passage Negatives [2]

• Goal: Select most plausible T5 answer by identifying its best supporting evidence cell.

• Core Context Scoring (for text T and cell C_{target} 's context type $X \in \{\text{Row, Col}\}$): Let C_X be the set of cells in context X (row or column) of C_{target} . Weight $\alpha = 0.6$.

- $-S_{single}(T, C_X)$: Sim. between T and concatenated text of cells in C_X . (Cosine Sim.)
- $-S_{\text{multi}}(T, \mathcal{C}_X)$: Aggregated sim. between T and each cell in \mathcal{C}_X . (LSE Agg.)
- $-S_{\mathsf{context}}(T, C_{\mathsf{target}}, X) = \alpha \cdot S_{\mathsf{single}}(T, \mathcal{C}_X) + (1 \alpha) \cdot S_{\mathsf{multi}}(T, \mathcal{C}_X)$
- Two-Stage Selection Process: Let $S_{\text{cell-score}}(T, C_j) = S_{\text{context}}(T, C_j, \text{Row}) + S_{\text{context}}(T, C_j, \text{Col})$.
- 1. Candidate-Cell Matching (for each T5 answer candidate A_i):
- For every cell C_j : Calculate $S_{\text{cell-score}}(A_i, C_j)$.
- Identify best matching cell C_i^* for A_i (cell with max $S_{\text{cell-score}}(A_i, C_j)$).
- 2. Query-Evidence Scoring (for each pair (A_i, C_i^*) from Stage 1):
- Calculate final evidence score $S_{\text{evidence}}(A_i, C_i^*) = S_{\text{cell-score}}(\text{Query}, C_i^*)$.
- Final Selection: Choose A_i (and its cell C_i^*) with max S_{evidence} .

5. Key Results (NTCIR-18 U4)

Task	Metric	Public	Private	Key Findings
TR	Accuracy	97.70%	97.55%	Very high accuracy achieved.
	Accuracy@K	@1: ∼95%,	@3: ~99%	Strong performance (Retriever stage).
TQA	Value Acc.	86.57%	81.94%	Highly competitive.
	Cell ID Acc.	86.34%	82.76%	Accurate evidence identification.

Ablation studies confirmed component effectiveness: TR Reranker (+2.8pt), Cell-Multi-Vector (+7pt); TQA

- Negatives: Low BM25 score cells from the same table.
- Enhances distinguishing contextually similar but irrelevant cells.

Score Integration

- Combined Score: Weighted sum of S_{single} and S_{multi} .
- Weight $\alpha = 0.6$ (optimized on validation set).

 $S_{\text{final}} = \alpha S_{\text{single}} + (1 - \alpha) S_{\text{multi}}$

Cell ID Estimator (+4pt Value Acc).

6. Conclusion

Achieved:

High-performance TR & TQA for financial tables.

• Hybrid TR and Cell ID Estimator for TQA proved effective.

Key Preprocessing Steps

HTML Table Extraction & Cleaning

• Text Normalization (Unicode, Romaji/Katakana)

References

[1] Y. Kimura, et al. 2025. Overview of NTCIR-18 U4. *Proc. NTCIR-18*.
[2] J. Lee, et al. 2021. Phrase Retrieval Learns Passage Retrieval. *EMNLP*.
[3] T. Shen, et al. 2023. UnifieR: Unified Retriever. *KDD*.

