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1. Dataset

2. Approaches

The highest joint accuracy was achieved by the o1-mini model combined 

with embedding and few-shot method.

The dataset details are described in the overview paper published by the 

organizers [1].

The dataset consists of free-text radiology reports written by nine 

radiologists, derived from lung cancer cases available on Radiopaedia.

• Train data: 12 cases (108 reports)

• Validation data: 6 cases (54 reports) 

• Test data: 9 cases (81 reports)
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• Radiologists face an increasing workload due to the large volume of medical 

images that must be interpreted.

• The application of the TNM staging system is essential in cancer diagnosis 

and treatment planning,

• However, manual determination of TNM staging is time-consuming and 

places a significant burden on radiologists.

This study investigates methods to automatically predict TNM stage of lung 

cancer from radiology reports. (As part of the NTCIR-18 RadNLP2024 shared 

task).

We compared the accuracy of TNM classification following three approaches:

1. Model Comparison: We evaluated three OpenAI models: GPT-4o-mini, 

GPT-4o, and o1-mini.

2. Retrieval-augmented prompting: Similar reports were retrieved from the 

training data using cosine similarity search [2] and added to the prompt.

3. Few-shot prompting: Several examples from the training data were added 

to the prompt using the following format: 

• Input: Radiology report description

• Output: Correct label

• Explanation: Justification for the predicted value

3. Evaluation metrics
• Accuracy Metrics: 

 We evaluated performance using joint and individual factor accuracies (for T, N,          

    and M) in fine and coarse settings.

• Fine: Accurate prediction of all T, N, and M labels is required.

• Coarse: Grouping of similar labels by ignoring distinctions such as 

Tis/T1mi/T1a/T1b/T1c, T2a/T2b, and M1a/M1b/M1c is permitted.

• Improvement Rate: 

 The percentage of accuracy improvement over the baseline is calculated.

 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (%)  =  ((𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 −  𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒) / 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)  ×  100

On the private leaderboard, the final joint accuracy was 51.9%. 

• We demonstrated that LLMs with embedding-based similar report retrieval 

and few-shot learning improve the accuracy of automated TNM 

classification.

• Although the o1-mini model achieved the highest accuracy, issues regarding 

API cost and inference time remain.

• Low classification accuracy for the T factor was the primary issue, causing a 

significant performance drop on the test data.

• Baseline: refers only to the guideline during inference. 

• Baseline + embedding: add cosine similarity-based retrieve to the baseline. 

• Baseline + embedding + Few-shot: further incorporates few-shot learning 

in addition to the baseline.

Fig.1 Workflow and component diagram for LLM-based TNM classification.

• Consistent with the validation set, the T factor remained the most

challenging to classify. 

• The significant decrease in performance from the validation to the test 

datasets highlights an important issue for future research
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Fig.2 Accuracy (fine) for each factor and overall across the three LLM models.

Fig.3 Accuracy (coarse) for each factor and overall across the three LLM 

models.
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