AKBL at NTCIR-18 U4 TableRetrieval and TableQA

So Takasago¹, Tomoyosi Akiba² 1,2 Toyohashi University of Technology ¹takasago.so.ro@tut.jp, ²akiba@cs.tut.ac.jp

Approach

Our proposed methods for TableQA and TableRetrieval follow the workflow shown in the right figure.

- Table Preprocessing
- Cell Text Classification
- Table Segmentation
- Table-to-Text Generation
- Add Text Above Table
- Sentence Selection

Conclusion

- The TableRetrieval subtask did not yield good results.
- In the TableQA subtask, we achieved scores of 0.7850 for cell_id and 0.6871 for value.
- These scores are higher than the value score of 0.6470 obtained using GPT-40 with TO.
- Achieving these results with DeBERTa-V3, which is relatively lightweight compared to LLMs like GPT-4o, demonstrates the usefulness of our approach.
- The current text generation method cannot handle complex tables well, so further improvements are needed.

Related Works

- In last year's NTCIR-17 UFO[1] task, the TDE subtask was conducted.
- In this study, we reproduced the method of team OUC[2] and tackled the current task.

[1] Yasutomo Kimura, Hokuto Ototake, Kazuma Kadowaki, Takahito Kondo, and Makoto P. Kato. 2023. erview of the NTCIR-17 UFO Task. Proceedings of The 17th NTCIR Conference (12 2023). [2] Eisaku Sato, Keiyu Nagafuchi, Yuma Kasahara, Kazuma Kadowaki, Yasutomo Kimura. "OUC at NTCIR-17 UPO: TDE and TTRE." Proceedings of the 17th NTCIR Conference on Evaluation of Information Access Technologies, December 12-15, 2023, Tokyo, Japan.

Table Segmentation

回次	回次	第44期
決算年月	決算年月	2017年2月
売上高	(百万円)	458140
経常利益	(百万円)	75007

Figure : Target Table

[0.95, 0.05]	[0.95, 0.05]	[0.95, 0.05]
[0.40, 0.60]	[0.40, 0.60]	[0.20, 0.80]
[0.90, 0.10]	[0.95, 0.05]	[0.01, 0.99]
[0.90, 0.10]	[0.95, 0.05]	[0.01, 0.99]
Figure , Evennelle auteut by TDE		

and the split position with the highest TSS is searched for.

Using the equation on the right, the TSS score is $\text{TSS}(i,j) = \frac{\sum_{c \in \mathcal{H}(i,j)} P(\text{header} \mid \text{cell})}{|\mathcal{H}(i,j)|} + \frac{\sum_{c \in \mathcal{D}(i,j)} P(\text{data} \mid \text{cell})}{|\mathcal{D}(i,j)|}$

 $(\hat{i},\hat{j}) = \arg\max_{i,j} \mathrm{TSS}(i,j)$

[0.95, 0.05]	[0.95, 0.05]	[0.95, 0.05]	i –th
[0.40, 0.60]	[0.40, 0.60]	[0.20, 0.80]	ι –ιπ
[0.90, 0.10]	[0.95, 0.05]	[0.01, 0.99]	
[0.90, 0.10]	[0.95, 0.05]	[0.01, 0.99]	

 $\mathcal{H}(i,j)$ *j –th* column Figure: The split with the highest TSS

The split shown in the left figure is the optimal split. When the score is calculated for this split,

$$\begin{split} \text{TSS}(1,2) &= \frac{\sum_{c \in \mathcal{H}(1,2)} P(\text{header} \mid \text{cell})}{|\mathcal{H}(1,2)|} + \frac{\sum_{c \in \mathcal{D}(1,2)} P(\text{data} \mid \text{cell})}{|\mathcal{D}(1,2)|} \\ &= \frac{7.35}{9} + \frac{2.78}{3} = 1.74 \end{split}$$

Using the TDE model, each cell text is converted to [P(header|cell), P(data|cell)]. (Cell Text Classification)

Table-to-Text Generation

We generate sentences from the table using the template 「AのBはCです。」.

 $\mathcal{D}(i,j)$

	回次	回次	第44期
	決算年月	決算年月	2017年2月
B	売上高	(百万円)	458140
	経常利益	(百万円)	75007
Figure : Evample of a table after Table Segmentation			

「第44期の売上高、(百万円)は458140です。」

When sentence generation is performed on the above table, the following sentences are obtained:

- 第44期 「第44期
- \mathcal{O}
 - 売上高、(百万円) 経常利益、(百万円) は
- 2017年2月 は は 458140
- です。」

Results

- TableRetrieval had a low accuracy.
- DeBERTa-V3, which has relatively low computational cost, achieved accuracy comparable to LLM.

Table : Accuracy in TableQA

Training Dataset	Accuracy	
Halling Dataset	cell_id	value
TO (GPT-4o)	-	0.6470
JRTE-Corpus	0.3323	0.3179
Created Dataset	0.7850	0.6871

Table : Accuracy in Retrieval.

Note that the accuracy for the "BM25" method is based on the DryRun and Valid datasets

,	,
Approach	Accuracy
TO (text-embedding-3-small)	0.187
BM25	0.209
BM25(Add text above Table)	0.329