TUSNLP at the NTCIR-18 MedNLP-CHAT Task: **Utilization of External Medical Knowledge and** Hybrid Approach of BERT and ChatGPT

Aoi Ohara^{1*}, Nanami Murata^{1*}, Ami Yuge^{1*}, and Rei Noguchi^{1*+} ¹Department of Business Economics, School of Management, Tokyo University of Science

*These authors have contributed equally to this work and share first authorship. / ⁺Corresponding author.

Introduction

Medical chatbots are highly expected to reduce the burden on physicians and improve patient accessibility. However, generative AIbased chatbots are known to output plausible misinformation, known as hallucination, which can cause serious issues of medical safety and ethics. In this study, we propose three model systems for detecting medical, legal, and ethical risks in chatbot responses.

Methods **BERT** model

ChatGPT model

Acquisition of

medical knowledge

WIKIPEDIA

summarization

ChatGPT

Summarized

knowledge

~ — **~** —

~--**~**-

- Developed BERT models that directly predict the risks.
- Experimented with some models:
 - Data augmentation by backtranslation
 - Summarization by ChatGPT (Extractive / Abstractive / Medical-specific)
 - Two types of tokenizers (JMedRoBERTa / MeCab)
 - Removal of stopwords

Tabel 1 Overview of the BERT Models

- Developed ChatGPT models that predict the risks using **medical** knowledge extracted from Wikipedia like "RAG" system.
- Experimented with some models:
 - GPT-3.5 / GPT-4o-mini model
 - Three types of prompts
 - Detecting incorrect information (_harmful)
 - Detecting overstatement (_toomuch)
 - Referring "Risknote" (_Note)

Tabel 2 Results of the ChatGPT Models

Model Name	Back- Translation	Summarization	Tokenizer	Stopwords Removal	Model Name	accuracy	precision	recall	F-measure	
Vodel_A	No	No	JMed	No	2 toomuch	0 6000	0 6000	0 0020	0 1622	
Nodel_B	Yes	No	JMed	No	5_toomuch	0.0900	0.0000	0.0930	0.1022	
Nodel_C	No	No	MeCab	No	3 harmful	0.6238	0.3929	0.3438	0.3667	
Nodel_D	No	Extractive	MeCab	No		010200				
Nodel_E	No	No	MeCab	Yes	4mini_toomuch	0.5400	0.3600	0.5625	0.4390	
Model_F	No	Extractive	MeCab	Yes						
Model_G	No	Abstractive	MeCab	Yes	4mini_harmful	0.6809	0.5278	0.5938	0.5588	
Model_H	No	Medical-	MeCab	Yes	4mini Note	0.6200	0 1318	0.6250	0 5128	

- Integrated the risk prediction results of BERT and ChatGPT models by taking **the union set** of the True/False outputs from each model.
- Selected Model_G for the BERT model as part of the hybrid model, because of the best results.
- Selected 4mini_harmful for the ChatGPT model as part of the hybrid model.
- In addition, three types of "system **role**" were added to the prompts for the ChatGPT model, depending on the kind of risk to be predicted:
 - Physician
 - Expert in medical ethics
 - Legal expert in the medical field

411111 NOLE 0.02000.4340 0.02300.0170

Results

System	Risk	Accuracy	Recall	Precision	F1-measure
	Medical	0.524	0.456	0.417	0.407
BERT	Legal	0.817	0.500	0.500	0.489
	Ethical	0.913	0.604	0.618	0.610
	Medical	0.595	0.509	0.550	0.422
ChatGPT	Legal	0.659	0.569	0.539	0.524
	Ethical	0.889	0.533	0.533	0.533
	Medical	0.524	0.465	0.447	0.435
Hybrid	Legal	0.635	0.579	0.542	0.518
	Ethical	0.865	0.637	0.577	0.593

- The BERT model performed well for both legal and ethical risks. In particular, F1 in ethical risk was ranked in the top three.
- The ChatGPT model produced the best results for medical risk, suggesting that external medical knowledge contributes to accuracy improvement.

• The hybrid model yielded an overall improvement in recall value compared to the other systems, indicating that it reduces false negatives by combining the results from the BERT and ChatGPT models.

Conclusion

 Our three systems demonstrated a certain level of accuracy and usefulness.

• Since the hybrid model improved the recall value, the BERT and the ChatGPT models may have different points of focus for prediction, and a detailed analysis of this difference may provide hints for further accuracy improvement.