

NLI-24 at the NTCIR-18 RadNLP

NTCIR

Chirag Bhawnani¹, Dhananjaya Bedkani Linganaik², Sanjeeth J. Veigas², Vishnu Kumar Jakhoria² 1. NEC Corporation Japan 2. NEC Corporation India

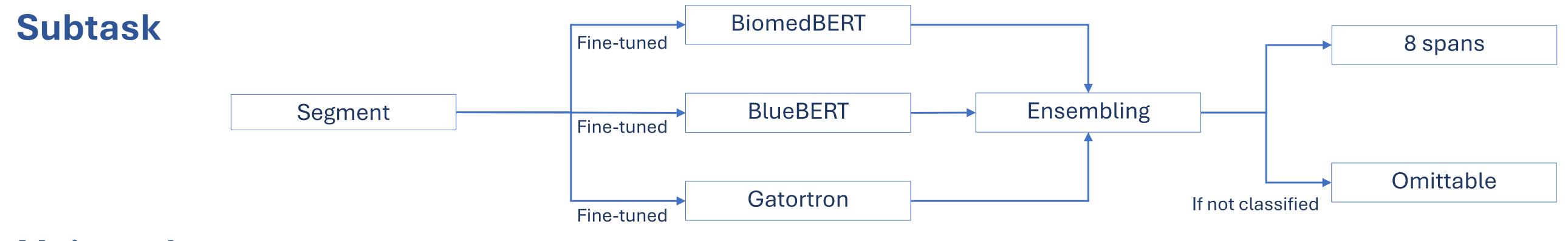
Introduction

- Lung cancer poses a significant global health challenge with low survival rates (less than 21% five-year survival).
- Accurate TNM staging is crucial for effective treatment planning.
- Radiology reports derived from CT/MRI, while informative, often lack explicit TNM staging, requiring manual extraction.
- Manual extraction leads to delays in tumor registries, impeding timely treatment and access to clinical trials.
- **Our Solution:** We present an automated NLP solution for TNM staging from radiology reports.
 - Document segmentation to identify key information classes.
 - Automated TNM staging using transformer-based models.
 - Aims to expedite staging, improve diagnosis, and enhance treatment planning.

Tasks

- RadNLP at NTCIR-18: A shared task focused on NLP for radiology.
- **Subtask:** Document Segmentation: Classifying sections of radiology reports.
- Main Task: TNM Staging: Automated lung cancer staging from radiology reports.

Methodology

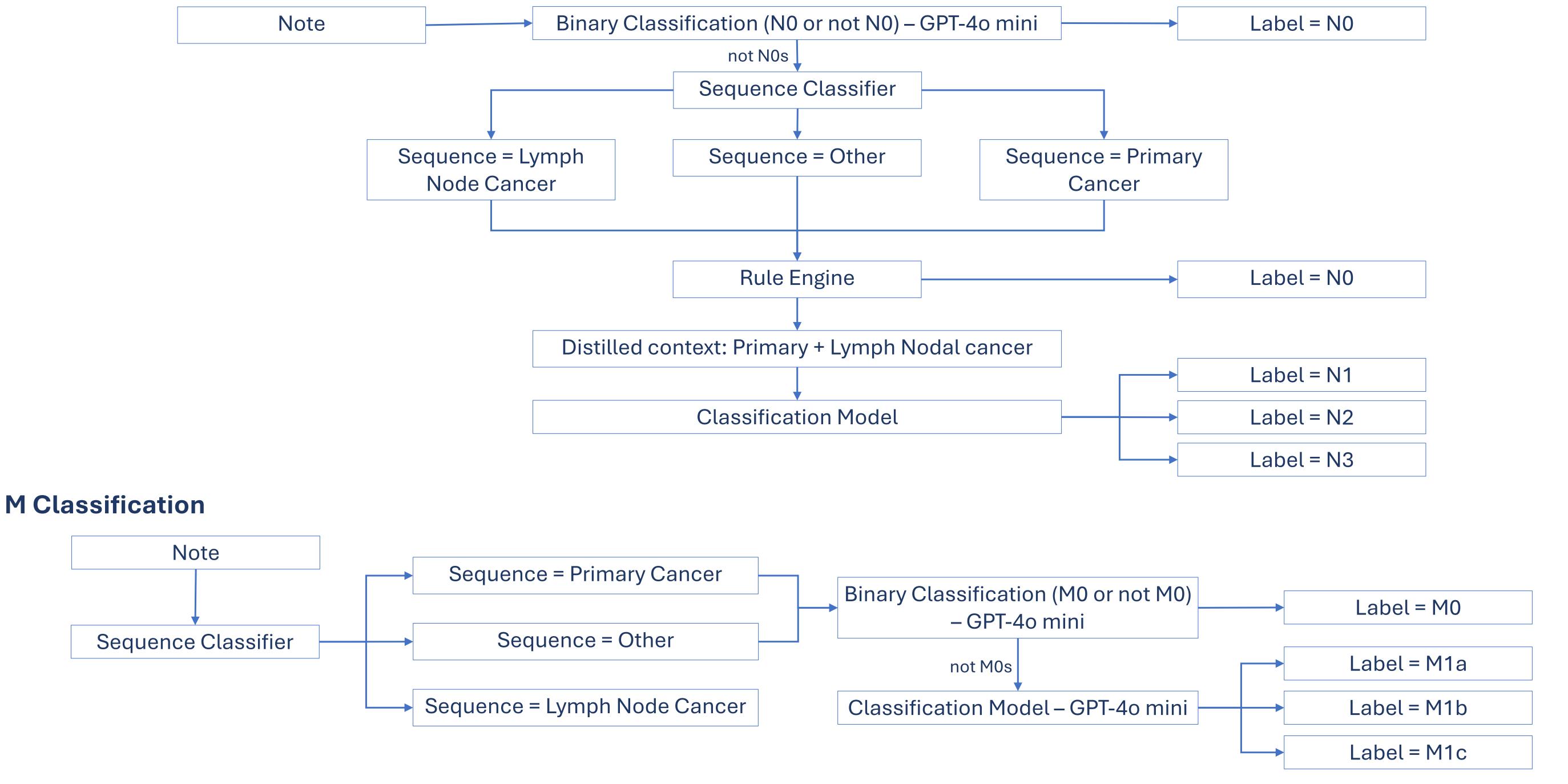


Main task

T Classification

• A two-step rule-based approach using GPT 40-mini was implemented: first classifying overarching T categories (T0-T4), then separately classifying T1/T2 subclasses.

N Classification



Results

Subtask

Main task

Rank	ID	Overall	Inclusion	Measure	Extension	Atelectasis	Satellite	Lymp.	Pleural	Distant	-	rank	id	Joint (fine)	T (fine)	N (fine)	M (fine)	Joint (coarse)	T (coarse)	N (coarse)	M (coarse)
Tunn	12					1110100000	outenite	27mp.	1 10 111 111	Distant	-			,,	- ()	()		J ()	- ()		()
1	NLI24	0.9433	0.9719	0.8440	0.7512	0.8407	0.8631	0.9886	0.9615	0.9122		1	TMUNLPG3	0.6543	0.7037	0.9136	0.8889	0.6914	0.7407	0.9136	0.9136
2	TMUNLPG3	0.9336	0.9297	0.8207	0.7522	0.8696	0.7831	0.9770	0.9615	0.8306		2	TMUNLPG3	0.6296	0.7284	0.9383	0.8395	0.6667	0.7407	0.9383	0.8889
3	tsukurad	0.9180	0.9551	0.7111	0.7466	0.9211	0.7831	0.9653	0.9615	0.8746		3	CYUT	0.6049	0.6914	0.9383	0.9259	0.6296	0.7037	0.9383	0.9383
4	Dhananjaya	0.9180	0.9647	0.8351	0.7692	0.7143	0.6928	0.9770	0.9223	0.8103		4	NLI24	0.5679	0.6914	0.9506	0.8395	0.7160	0.8272	0.9506	0.8519
5	TMUNLPG3	0.9155	0.9508	0.7940	0.7273	0.8407	0.6845	0.9808	0.9615	0.8276		5	tsukurad	0.5556	0.6049	0.9506	0.8765	0.6914	0.7160	0.9506	0.9136

Conclusion

- Multi-Step Approach: Novel method improves TNM classification & report segmentation using anatomical boundaries.
- Improved Efficacy: Decomposing tasks highlights anatomical boundaries, amplifying the efficacy of transformer models & LLMs.
- NER Potential: Named Entity Recognition (NER) can further enhance the multi-step framework.
- RadNLP2024 Performance: Achieved top rankings in the RadNLP2024 evaluation.
 - Subtask: Rank 1
 - Main Task: Rank 4
- Future Directions: Refine T-staging classification and address data limitations to improve clinical decision support.

Acknowledgement: This work was supported by NEC Corporation Japan and NEC Corporation India .