NITKC at the NTCIR-18 RadNLP shared task: Using Graph-RAG in a lung cancer staging method with Natural Language Processing for Radiology Aoi Kondo*, Tan You Quan Bernon^{**}, Tsubasa Oka*, Hiroaki Koga* and Mikio Oda* (*NIT, Kurume College, **Temasek Polytechnic) 06-11-2025 / The 18th NTCIR: RadNLP2024 Shared Task / Tokyo, Japan

[Background]

The RadNLP 2024 Shared Task [1]

- The RadNLP 2024 Shared Task of **Natural Language Processing (NLP) for Radiology.**
- Consists of two tasks called the **main task** and the subtask.

Main task

- Multi-label document classification.
- To predict the **T**, **N**, and **M** categories (**TNM**) classification) for each radiology report. • The TNM classification is a **hierarchical structure**. The T category contains **T0**, **T2**, **T3 T4** and **Tis**, with **T1mi**, T1a, T1b, T1c, T2a, and T2b below them. The N category contains N0, N1, N2, and N3. The M category contains M0 and M1, with M1a, M1b, and M1c below M1.

[Experiments]

Experimental setup

- We used sometimesanotion/Lamarck-14B-v0.7 model as the LLM for the main task.
- We used **Neo4j** for the graph database.
- The subtask was trained for 10 epochs with a batch ulletsize of 4.

Evaluation methods

We used two types of evaluation methods: fine-• grained and coarse-grained. • The fine-grained score is the proportion of reports where all T, N, and M factors are correctly predicted. The coarse-grained score **ignores the subcategories of** • the TNM classes.

Subtask

- Multi-label sentence binary classification.
- Each sentence is checked for **multiple lung cancer**related topics: Omittable, Measure, Extension, Atelectasis, Satellite, Lymphadenopathy, Pleural, and Distant.
- The model predicts whether each topic is **mentioned** or not (True/False) for each sentence.

[Proposed Methods]

Main task

• We adopt the **Graph-RAG** [2] approach **to determine** the TNM category. • We use the **subtask results**.

Accuracy scores of the main task

Evaluation type	Fine	Coarse	
Joint accuracy	0.296	0.482	
T accuracy	0.457	0.642	
N accuracy	0.864	0.864	
M accuracy	0.778	0.815	

[Discussions]

Are our methods really effective?

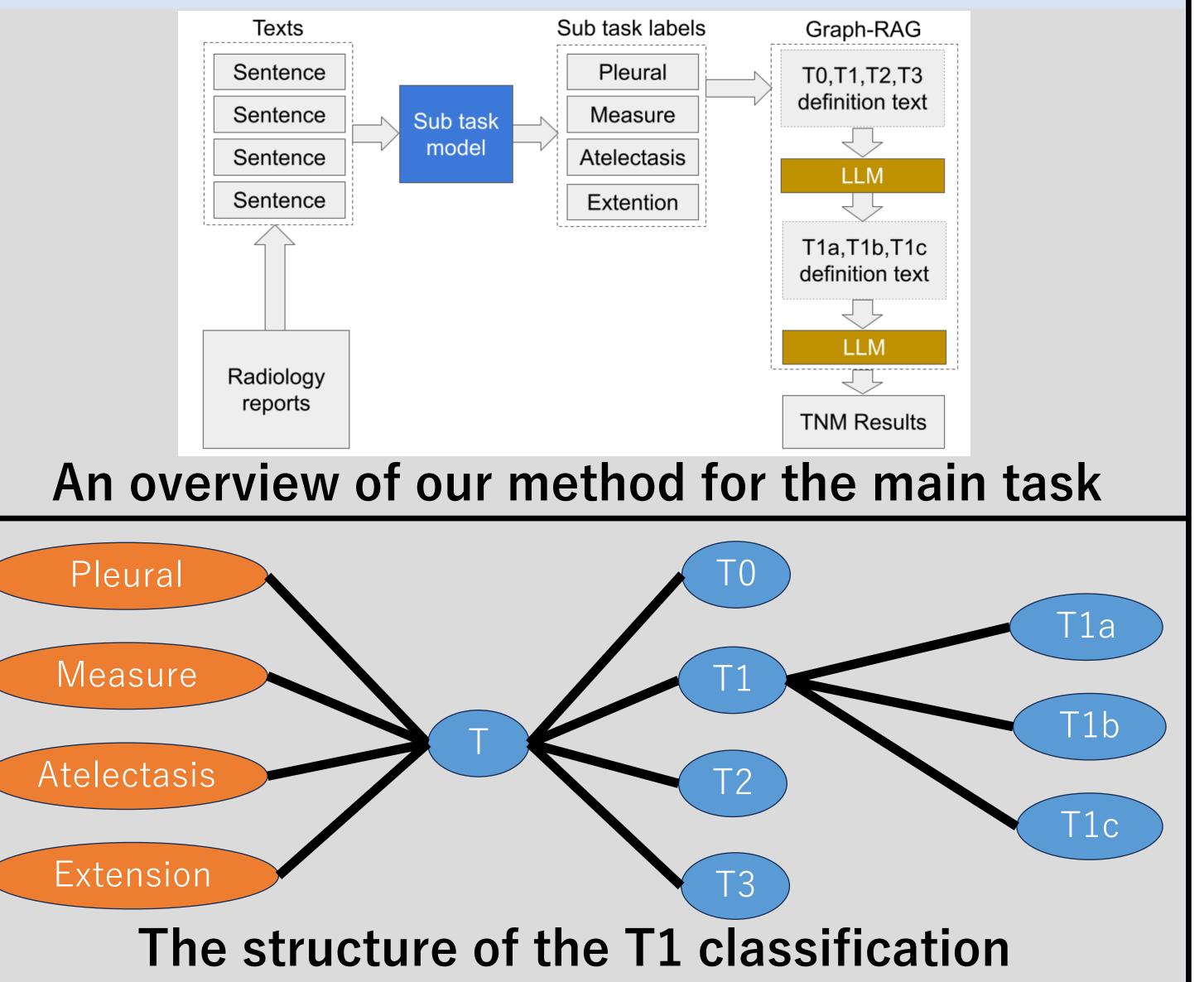
- We compared our method with the Long-Context (LC) approach using validation data from the main task.
- The Long-Context method is a **data augmentation approach** that uses an LLM prompt to insert all definition text **directly**. In contrast, our method inserts definition text based on a graph structure. Our method **outperformed** LC in both fine-grained and coarse-grained evaluations.

Subtask

- We use **BioBERT** and **MedBERT** to predict labels.
- BioBERT and MedBERT are pre-trained models for **the** medical NLP task.

How to predict the labels of the main task

- 1. Divide a radiology **report into sentences**.
- 2. Perform **binary classification** for each subtask topic.
- 3. Adapt the definitions of the topics **based on the binary classification**, and use **Graph-RAG** to insert them into the LLM's prompts.



Comparison between our method and LC

	Our method		Long-Context	
	Fine	Coarse	Fine	Coarse
Joint accuracy	0.500	0.667	0.273	0.527
T accuracy	0.611	0.796	0.473	0.746
N accuracy	0.907	0.907	0.764	0.764
M accuracy	0.852	0.889	0.782	0.837

[Conclusions]

- We used Graph-RAG for the main task and BERT lacksquaremodels for the subtask. In future work, we plan to enhance the graph with domain-specific medical knowledge in the main task and to train the subtask model with a larger dataset.

[1] Yuta Nakamura et al., "NTCIR-18 RadNLP 2024 **Overview:** Dataset and Solutions for Automated Lung Cancer Staging," in In Proceedings of the NTCIR-18 Conference, June 2025.

[2] P. Lewis et al., "Retrieval-augmented generation for knowledge-intensive NLP tasks," Neural Inf Process Syst, vol. abs/2005.11401, pp. 9459–9474, May 2020.