
Submissions Micro-F1 Macro-F1 Ranking

AIDAVANCE_ECC_1 (3-Label mDeBERTa)  0.6905 0.6711 4th

AIDAVANCE_ECC_2 (3-Label mDeBERTa-NLI)  0.6667 0.6105 13th

AIDAVANCE_ECC_3 (Cascade mDeBERTa-NLI)  0.6905 0.6610 7th

3-Label Approach Cascade Approach

Model Micro-F1 Macro-F1 W-F1 Micro-F1 Macro-F1 W-F1

DeBERTa 0.7600 0.7278 0.7648 0.7400 0.7187 0.7501

DeBERTa-NLI 0.7600 0.7278 0.7648 0.7667 0.7508 0.7740

mDeBERTa 0.8000 0.7878 0.8025 0.7600 0.7416 0.7672

mDeBERTa-NLI 0.7933 0.7705 0.7959 0.7733 0.7593 0.7802

Finbert 0.7333 0.7010 0.7391 N/A N/A N/A

GPT-4o (Few-shot) 0.6933 0.6725 0.7050 0.6733 0.6445 0.6841

GPT-4o (Base Model) 0.2533 0.2388 0.1889 0.5267 0.4140 0.5672
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“claim” and “premises” were merged into full,
cohesive paragraphs, based on gramatical cohesion;
 “quarter” and “year” were then appended to the end
these paragraphs as publication dates.

We evaluated two primary strategies: 
Fine-tuning BERT Models
Prompt-Based Classification with LLMs

3.1. Model Selection
Explored models include DeBERTa, mDeBERTa,
DeBERTa-NLI, mDeBERTa-NLI and FinBERT.

3.2. 3-Label Classification Approach

3.3. Cascade Classification Approach

A single fine-tuned BERT-based model classifies
texts into the original 3 categories.

A two-Step classification process with two fine-tuned
BERT models. 

4. PROMPT-BASED LLM CLASSIFICATION 

5. RESULTS

6. CONCLUSIONS

4.1. Model Selection

4.2. Few-shot Approach

5.1. Experimental Results

5.2. Official Submissions

Fine-tuned BERT models consistently outperformed our LLM-based
approaches
Multilingual models such as mDeBERTa outperformed monolingual ones
during validation
Finbert, despite its financial domain specialization, consistently
underperformed in this task
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claim premises

quarter year
+

It’s a strong... We are guiding...

Q1 2018

+

This publication is
from Q1 of 2018.

We are guiding
[...]. It’s a strong
double-digit
growth, 13% to
17%.

Transformed Text

ECC Text 1st Level BERT Model

Label2nd Level BERT Model

0 (No Time Reference)

1 (Long Past)

2 (Short Past)

N (Contains Time Reference

ECC Text

Fine-Tuned 
BERT Model

Label1 (Long Past)

2 (Short Past)

0 (No Time Reference)

 [...]. What happened 3
weeks ago was a shock to
[...] . This publication is
from Q2 of 2019.

Transformed Text

LLMs used include OpenAI’s (gpt-4o) and Google’s
(gemini-2.0-flash)

The 3 models which achieved best overall results during
validation were used as our task submissions. Their official
scores and ranking can be observed in the table below:

Few-shot Prompt

 [...]. Classify between 0, 1
or 2 [...] . Here are some
examples to guide you:
{examples with labels
answered}. Output

2

4.3. Argument Rewriting Approach

 [...]. What happened 3
weeks ago was a
shock to [...]

Transformed Text

Fine-Tuned 
BERT

Rewritting Prompt

 [...]. Rewriting Instructions
to Reduce Ambiguity
 - Whenever a quarter is
mentioned in isolation, add
its corresponding year.
Example: "Q4" becomes
"Q4 of 2020".[...] .

Rewritten text

 [...]. What happened
Q2 of 2019 some
weeks ago was a
shock to [...]

The following table portrays each model’s validation results:

Rewriting ECC texts using LLMs, in order to remove time
ambiguities and further enhance BERT models performance.
This approach led to no significant classification improvements.

Few-shot text classification using Large Language Models.
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3. FINE-TUNING BERT MODELS


