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» Lung cancer staging is crucial for guiding treatment decisions and N M
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+ The RadNLP 2024 shared task at NTCIR-18 addresses this by T2a |24 5
encouraging the development of NLP techniques for automatically T2b 20 0
classifying lung cancer stages (T: Tumour size, N: Node involvement, T3 17 4
M: Metastasis) from radiology reports.[1] T4 39 10

Table 2: Data Distribution for T, N, and M classes after a 20% Stratification using T staging
« Key challenges include the variability of clinical language, limited

dataset size, and significant class imbalance across TNM stages.
These factors hinder effective model generalization and fair evaluation
across all classes.

While stratification of the original validation set could introduce data leakage, ensuring
representation of all classes in both sets was deemed more critical for our small,
Imbalanced dataset

Data Augmentation : To address the small dataset, we used back-translation (English -
> French/German -> English) to increase training data from 130 to 390 instances. This
technique introduces textual variation while preserving core meaning and ensuring
TNM stage information remained unchanged.

The aim was to improve model generalizability and reduce overfitting

* This work describes the UoM team's approach, tackling limited data
and class imbalance through data augmentation and stratification.

* The focus is on improving generalization and ensuring balanced
evaluation across all TNM stages.

Model Selection and Training : We utilized RadBERT, a transformer model pre-trained
on 4,056,227 radiology reports. Its pre-training on radiology reports makes it well-
suited for this task. The model is available via Hugging Face. We fine-tuned three
separate RadBERT models for T, N, and M stages on the augmented training data
using the Transformers library in Python

Experiments and Results

Our methodology (Figure 1) involved dataset preparation, data
augmentation, and model selection/training.

Performance was evaluated using fine-grained accuracy (exact TNM stage match,
e.g., T2a vs. T2) and coarse-grained accuracy (broader categories, e.g., T2).
Joint accuracy: proportion of reports with all three TNM stages predicted correctly.
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Figure 1: Process Flow for our method for T, N, M prediction T Accuracy(Fine) 0.3939 0.9405 1.0000 0.3333

N Accuracy(Fine) 0.6061 0.9881 0.9815 0.5926
Dataset : The task dataset comprised 162 radiology reports (108 training, M Accuracy(Fine) 0.8788 1.0000 0.9815 0.6914
54 validation) with TNM labels. Initial analysis revealed significant class Joint Accuracy(Coarse) - - 0.9630 0.2593
imbalance, and some labels absent in either training or validation splits. T Accuracy(Coarse) 0.4242 0.9762 1.0000 0.4444
Table 1 shows the original data distribution for the 3 classes N Accuracy(Coarse) 0.6061 0.9881 0.9815 0.5926

M Accuracy(Coarse) 0.9091 1.0000 0.9815 0.7901

Train |Valid Train |Valid Train |Valid 5-Fold Cross-Validation provided a more robust performance estimate on augmented

T N M data, reducing variance but there was a substantial performance drop from validation

to test set, indicating poor generalization.
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T1mi 0 1 N2 45 20 M1b 14 0 + We explored automated classification of lung cancer TNM stages using
T1b 9 0 N3 9 5 M1c 20 18 RadBERT, focusing on addressing data scarcity and class imbalance via
T1c 3 3 stratified sampling and data augmentation.

« Back-translation improved data diversity and validation accuracy; 5-fold cross-
T2a 20 9 validation provided more reliable performance estimates on augmented data.
T2b 19 6 « Despite these improvements, the model showed poor generalization to the test
T3 18 3 set (joint accuracy: 96.3% on validation vs. 12.35% on test).
T4 31 18 * This highlights challenges in building models that generalize well with domain-

Table 1:0Original Data Distribution for T, N, and M Classes

To mitigate imbalance, we applied stratification, selecting a 20% level based
on the T class, as it provided the best balance for model performance and
validation set size. Stratification by T also improved N and M class
distribution.

Table 2 shows the data distribution for T, N, and M classes after a 20%
Stratification using T staging
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specific language variability and limited data, suggesting overfitting.
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