ATILF at NTCIR-18 RadNLP 2024 Shared Task:

With less radiology reports, comes less performance

Aman Sinha^{1,2} and <u>Ioana Buhnila</u>¹

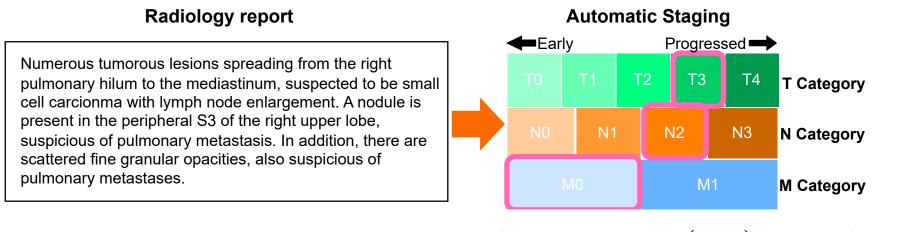
¹ATILF, Université de Lorraine - CNRS, Nancy, France ²ICANS Strasbourg firstname.lastname@univ-lorraine.fr

Introduction

- □ In this work we investigated the performance of general and medical PLMs and LLMs on radiology report identification and classification in English. □ We benchmarked PLMs and LLMs for TNM clinical staging classification and sentence segmentation classification task using prompts and class/subclass definitions to perform better semantic disambiguation.
- □ Our results showed that in low amount of data setting, we can obtain better results with medical PLMs in comparison to general and medical LLMs.

Task Description

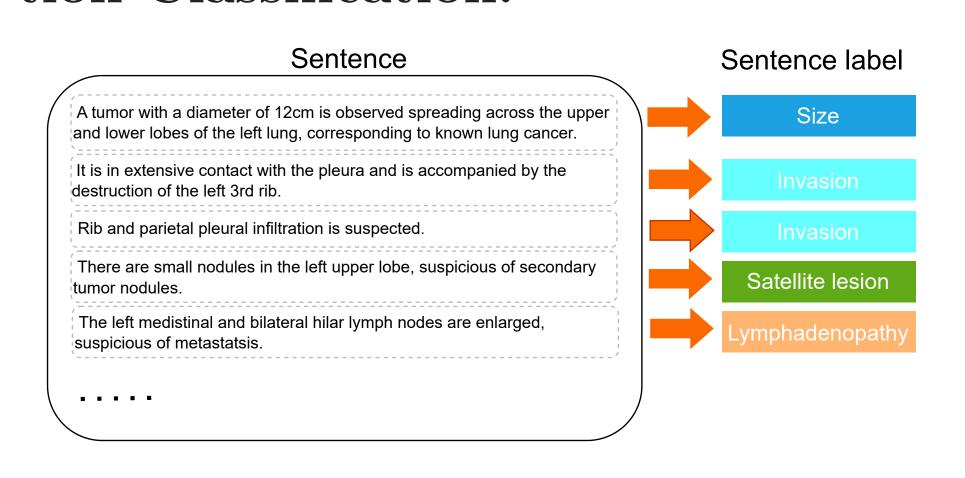
► Main Task: TNM clinical staging classification.



Number of classes: T Category (10), N Category (4) and M Category (4).

Total number of possible classes: 160.

► Sub Task: Sentence Segmentation Classification.



Number of classes: Inclusion(2), Measure(2), Extension(2), Atelectasis(2), Satellite(2), Lymphadenopathy(2), Pleural(2), Distant(2).

Total number of possible classes: 64.

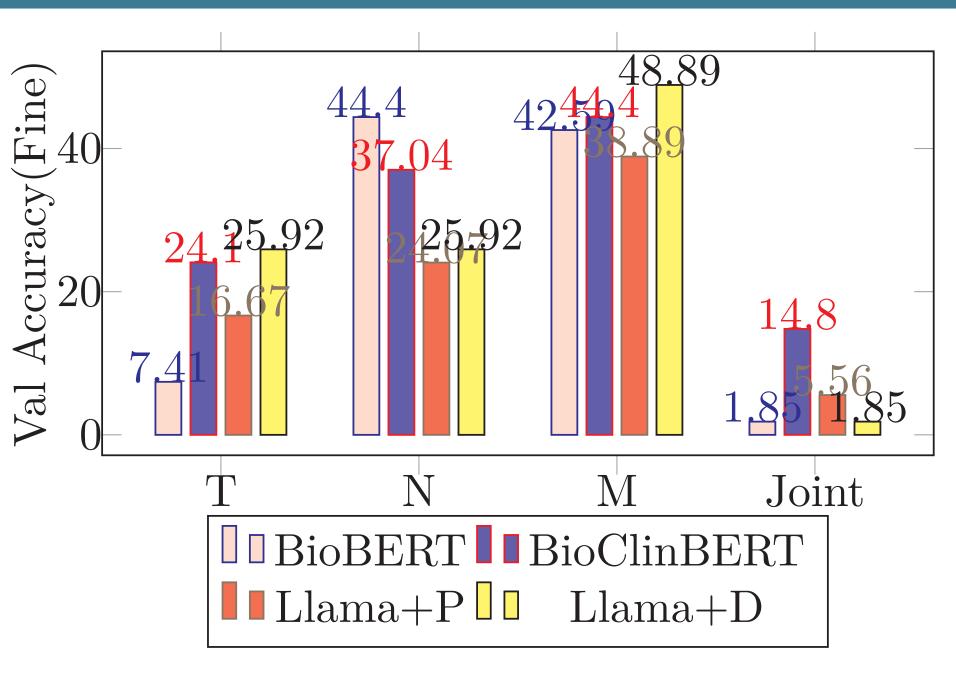
Experimental Protocol - Main Task

- ► TNM clinical staging classification.
- \square Baseline PLMs: BioBERT and BioClinicalBERT.
- □ Zero-Shot Prompting: (i) Simple-Prompting(P) (ii) Definition-Prompting(D); LLMs: Llama3.2 , BioMedllama
- ► Evaluation metrics: Individual Accuracy and Joint Accuracy (Fine and Coarse).

Experimental Protocol - Sub Task

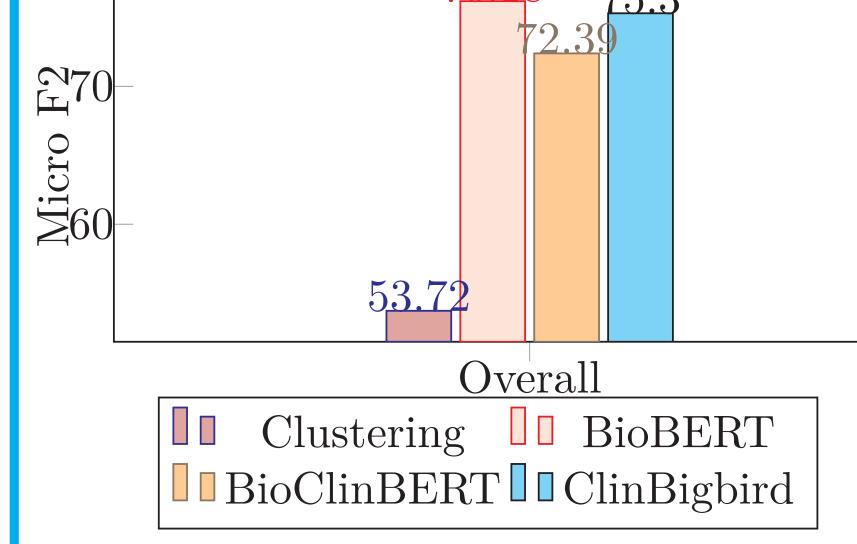
- ► Sentence segmentation classification.
- ☐ **Baselines:** Unsupervised Clustering.
- □ **PLMs:** <u>BioBERT</u>, <u>BioClinicalBERT</u>, and ClinicalBigBIRD.
- ► Loss Function: Focal Loss
- ► Evaluation metrics: F2.0 Micro Scores.

Val Results - Main Task



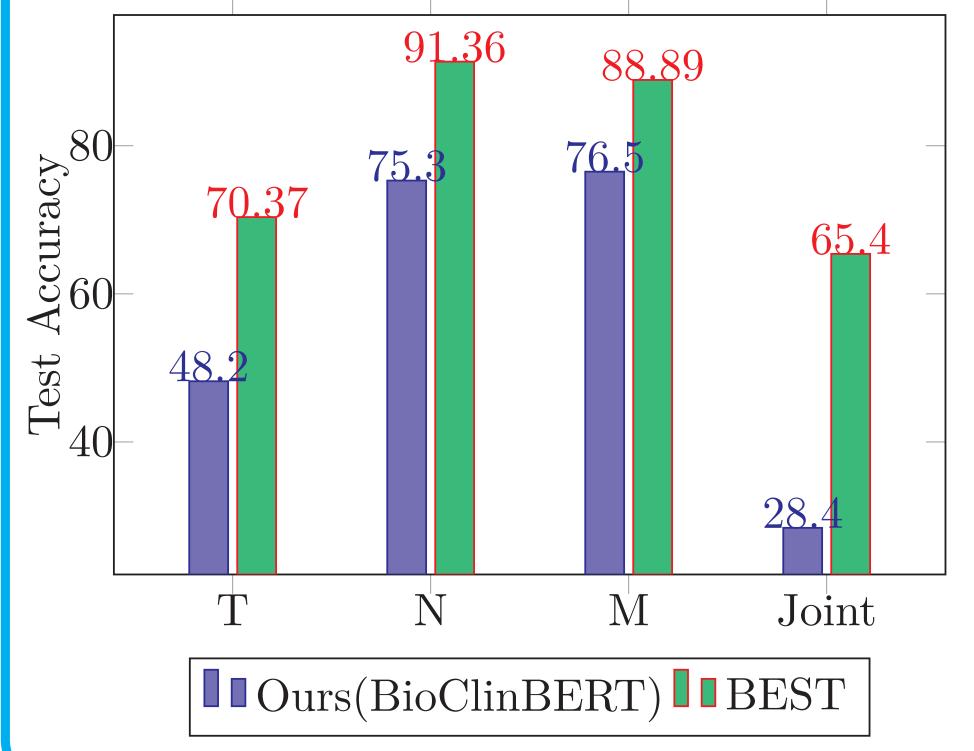
▶ Our final system: BioClinicalBERT

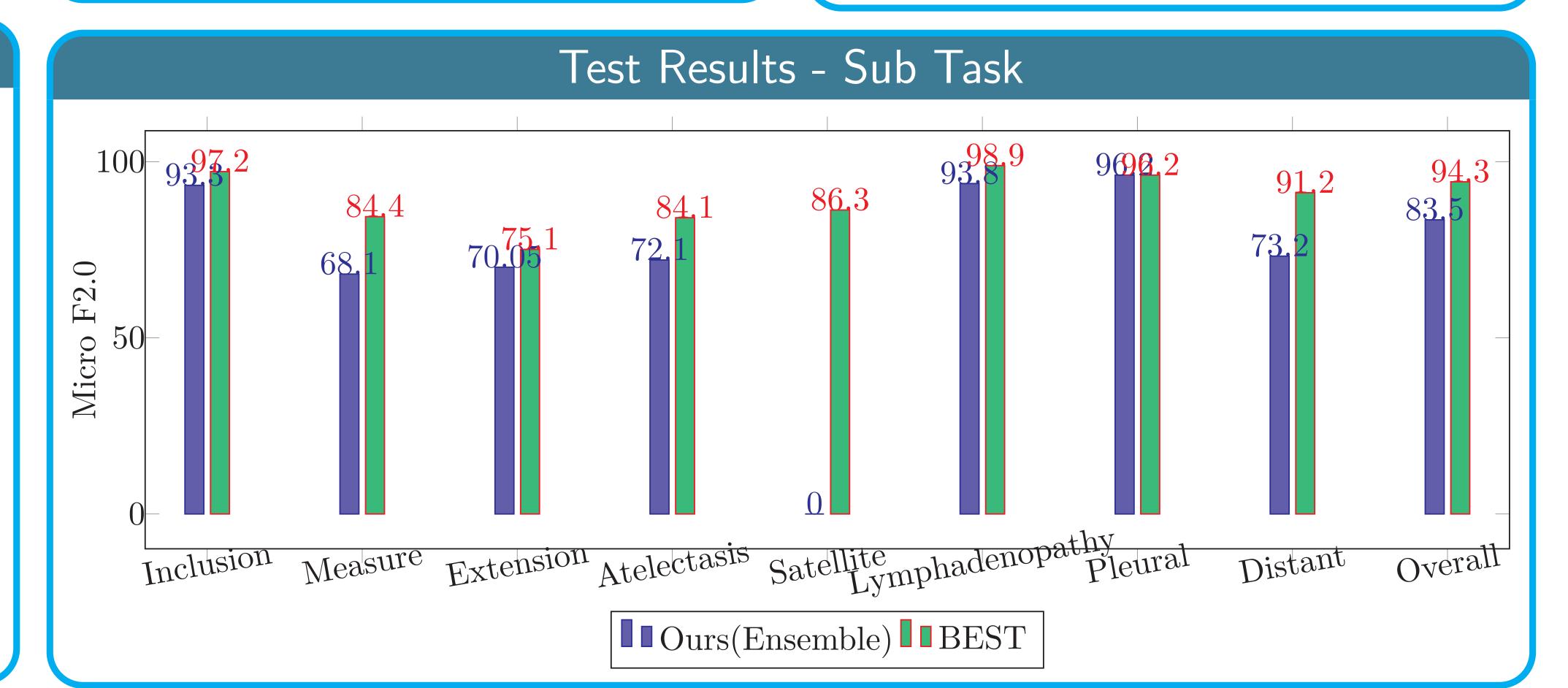
Val Results - Sub Task 76.18 75.3



▶ Our final system: Ensemble of BioBERT, BioClinicalBERT, ClinicalBigBIRD.

Test Results - Main Task





Findings and Conclusions

► Findings

- ☐ For clinical staging, PLMs performs competitive compared to zero-shot LLMs.
- \Box Definition based prompting is more effective compared to vanilla prompting for individual T/N/M clinical staging identification.
- \square Increasing number of classes $M \le N \le T$ lowers LMs capability to automatic clinical staging. Furthermore, joint accuracy drops strongly for all models due large label space.
- □ For sentence segmentation, ensemble of PLMs stand very competitive against best systems.

► Conclusions

- \square Automatic clinical staging remains challenging for both small and large language models (the most difficult: T class). However, **PLMs show have advantage over LLMs** as *LLMs suffer from hallucination*.
- □ PLMs show strong potential for sentence segmentation classification with data augmentation and further hyper parameter tuning.

Our Paper

