UTY at the NTCIR-18 RadNLP 2024 Task:

Possibilities and Limitations of a Hybrid Rule-Based and LLM Approach for Lung Cancer TNM Classification

Yosuke Yamagishi¹, Ryosuke Tomiyama², Yui Ueda³

¹The University of Tokyo, Japan | ²Japan Medical Device Corporation, Japan | ³International University of Health and Welfare Narita Hospital, Japan

Background & Motivation

Automated extraction of TNM staging information from radiology reports is challenging due to:

- Complex clinical language interpretation
- Detailed staging criteria application
- Fine-grained classification requirements

TNM Classification Complexity

T category:

T0, Tis, T1mi, T1a, T1b, T1c, T2a, T2b, T3, T4 (10 classes)

N category:

Methodology

Hybrid Two-Stage Pipeline

Our approach combines **LLMs** with **rule-based processing** for lung cancer TNM staging.

Stage 1: Information Extraction

GPT-40 extract structured information from radiology reports **Key Features Extracted (13 items):**

Tumor size, laterality, characteristics (GGO/solid)

Lymph node involvement and location

Metastasis patterns and distant spread

Pleural effusion and other findings

Stage 2: Classification Strategy

• T Classification: Rule-Based

Why: Complex size thresholds require precise rules T0: No tumor | Tis: Pure GGO ≤30mm | T1mi: Solid ≤5mm T1a: ≤10mm | T1b: 11-20mm | T1c: 21-30mm T2a: 31-40mm | T2b: 41-50mm T3: >50mm or same lobe mets T4: Adjacent structure invasion

N0, N1, N2, N3 (4 classes)

M category:
 M0, M1a, M1b, M1c (4 classes)

Dataset & Task

NTCIR-18 RadNLP 2024 Shared Task Japanese Track

Basic Information

- 378 Japanese radiology reports for lung cancer staging
- **42 unique lung cancer cases** with comprehensive documentation
- **9 board-certified radiologists** providing expert interpretations
- 8th edition JLCS criteria (Japan Lung Cancer Society) for annotation

Dataset Characteristics

- **Multi-radiologist approach**: Each case interpreted by multiple experts to capture variability in clinical reporting
- Fine-grained classification: More detailed TNM subcategories compared to previous NTCIR tasks
- **Real-world clinical data**: Authentic radiology reports from actual clinical practice
- Language-specific challenges: Japanese medical terminology and reporting conventions

Dataset Split	Reports	Cases	Purpose
Training	108	12	We did not use

• N & M Classification: LLM-Based

Why: Simpler criteria benefit from LLM flexibilityN: Direct interpretation of lymph node descriptionsM: Assessment of distant metastasis patterns

Results

Metric	Validation	Test
Joint Accuracy	0.8148	0.3889
T Accuracy	0.8704	0.4769
N Accuracy	0.9259	0.8704
M Accuracy	1.0000	0.8889

Validation	54	6	Algorithm development	
Test	216	24	Final evaluation	

Key Observations

- Significant T-classification drop from validation to test
- Stable N/M performance across datasets
- LLM approach more robust than rule-based

Discussion

• Key Findings

T Classification: Strong validation → Poor test performance
 N & M Classification: Consistent high performance across datasets
 LLM approach generalized better than rule-based methods

Critical Insights

Rule-Based Limitations

Limited validation data: Only 54 reports for development **Incomplete rules**: Missing complex staging criteria

• LLM Advantages

Robust generalization: Maintained accuracy across datasets
Clinical flexibility: Handles diverse reporting styles
Less engineering: No extensive rule development needed

Implications for Clinical NLP
 Balance precision and flexibility in system design
 Use component-specific strategies (different approaches for Tvs N/M)
 Larger datasets essential for robust rule development