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Abstract

This paper presents an information retrieval 
system for the NTCIR-7 information retrieval for 
question answering task.  This system is com-
posed by three parts: (1) Query processing (2) 
Retrieval model (3) Re-rank module.  Query 
processing filters stop-words and selects query 
terms to generate a required term set for further 
retrieval.  Threes retrieval models from two 
famous retrieval systems are adopted.  They 
retrieved relevant documents based on the gen-
erated required set.  Finally, Re-rank module 
gives documents scores according to the distri-
butions of their possessive terms.  The per-
formance of our system achieves a mean average 
precision (MAP) of 0.4635, a Q-measure of 
0.4811, and an MSn-DCG of 0.6831 on 
NTCIR-7 IR4QA testing set.

1. Introduction

Queries present users’ information needs.  
Traditional information retrieval systems com-
pute a numeric score on how relevant each 
document is to the query, and rank the docu-
ments according to this score.  However, as 
technology improves, users may wish to find 
relevant documents by querying with natural 
questions instead of terms or some predefined 
topics. 

The aim of information retrieval for question 

answering is different from original information 
retrieval.  It is to see how the performance is 
when the query is a question, or at least ques-
tion-like.  It may give a reference for how is the 
performance before answering questions, which 
should be the upper bound for the performance 
of question answering.  However, with this task 
description, we may also design algorithms us-
ing some attributes of questions, or discuss re-
sults by question types.  

For this task, we borrowed some ideas tradi-
tional QA task and developed a three-phrased 
system.  The first phrase is query processing.  
Query processing performed a special stop-word 
filtering and produced a required set of query 
terms.  The concept of stop-words filtering is 
common in natural language processing, but we 
define stop-words by analyzing queries (ques-
tions).  The second phase, applying retrieval 
models then utilized this required set to retrieve 
relevant documents.  The concept of “required” 
which treats the selected terms as in the boolean 
model is also inherent from techniques in QA 
domain.  In the last phase, a re-rank module 
was applied to reorder the result list.  This 
re-rank model considers paragraph-level infor-
mation and hence more similar to the relevant 
passage retrieval in QA task. 

The remainder of the paper is organized as 
follows.  Section 2 contains an overview of our 
system and describes the methods to implement 
it.  Section 3 includes the evaluation results.  
Section 4 is a discussion on error analysis.  
Finally, section 5 concludes this paper and indi- 

― 153 ―



Proceedings of NTCIR-7 Workshop Meeting, December 16–19, 2008, Tokyo, Japan

Figure 2. Query processing workflow. 

cates the direction of future work. 
2. System Description 

Figure 1 shows the framework of our IR4QA 
system.  In this system, we first chunk a query 
into several terms, which are then passed to the 
retrieval model.  Retrieval model outputs a list 
of relevant documents in order.  Finally, these 
records reported by the retrieval model are 
re-ranked by the re-rank module. 

Figure 1. System framework. 

2.1.Query processing

To select query terms, we only use the words 
in the "QUESTION" field, since the "NARRA-
TIVE" part does not seem to provide more in-
formation at the first sight.  Then we try to re-
move stop words from these query terms.  
These sentences in the "QUESTION" fields are 
all questions, and their possessive terms play 
different roles.  What we try to remove are 
those terms which appear frequently in questions, 
and they are defined as stop words in this paper.  
Therefore, instead of look up in a general 
stop-word list, we count the frequencies of each 
term in all queries and drop it as stop words if 
the frequency is over 20.  Query processing 
workflow is shown in Figure 2. 

Except those terms we may not need in a 
query, the importance of other terms is not all 
equal.  A “required set” here denotes a set of 
terms which is considered more important.  The 

required set try collect discriminative terms.  
To select terms into the required set, we first 
calculate their weights.  The weight of term t is 
calculated as follows:
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where D(t) is the set of documents containing 
term t, and score(t,d) is given by the retrieval 
model (will be introduced in Section 2.2).  The 
score(t,d) represents the score of term t in spe-
cific document d.  Terms will be marked as 
required when it’s weighted higher than the 
threshold.  There is one threshold for each 
query and it is set to 70% of the maximum 
weight among terms in each query. 
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2.2.Retrieval model

Unlike words in the Latin language, Chinese 
words don't have obvious boundary divided by 
spaces.  Chinese word segmentation is usually 
necessary for determining the word boundary 
before processing Chinese texts.  A sentence is 
considered as a serial of characters before seg-
mentation.  After segmentation a sentence can 
be considered as a serial of words. Therefore, 
there are two different types of information re-
trieval models, word-based model and charac-
ter-based model.  The basic unit to be indexed 
in a word-based and a char-based retrieval model 
is a word and a character, respectively. 

Here we demonstrate the differences between 
two models by an example.  The sentence "

" (I wear jeans today) is a 
sequence of seven characters.  After segmenta-
tion, it becomes a sequence of four words "
"(I), " "(today), " "(wear), "
"(jeans).  If we retrieve by the query term 
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Figure 3. Retrieval model with required set. 

(cowboy, one word composite of two characters), 
this sentence will be retrieved in the char-based 
model but not in the word-based model, since it 
is only partially matched with the word "

" (jeans).  Though it seems better to adopt a 
word-based model in this case, the performance 
of the word-based retrieval model may be influ-
enced by the performance of the word segmenta-
tion. 

We adopt models of two well-known infor-
mation retrieval systems, Okapi and Lucene.  
They were chosen because their basic units of 
indexing are different.  Okapi is a word-based 
retrieval model.  Any words need to be exactly 
the same as indexed if they can be retrieved.  
Lucene provides both a character-based model 
and a special word-based model which retrieves 
documents in which words match partially with-
in one word with the query term, but words par-
tially match the query term cross the boundary 
of words will not be considered relevant.   

Figure 3 illustrates how the retrieval system 
works.  As mentioned in Section 2.1, a required 
set is generated for each query.  For each term 
in the required set, we used it to query Oka-
pi/Lucene and got a result list of relevant docu-
ments.  We then intersect these records and 
generate a new result set.  After intersection, 
every document in the result set is guaranteed to 
have all terms in the required set.  In other 
words, it performs the “AND” operation on 
search engines. 

At last, all query terms are used to query 
Okapi/Lucene together, and a list of relevant 
documents, D1, ... , DN is obtained.  For each 
document Di, we keep it as in the final result set 
if Di is in the current result set.  This step gives 
ranks to the documents in the current result set.  
However, if the size of the current result set is 
less than 1000, we will not have a final result set 
containing 1000 documents.  In this case, we 
selected documents to append it to the final re-
sult set from those haven’t been selected among 

D1 to Dn by their ranks. For instance, if the cur-
rent result set only contains D2 and D3, the final 
result will be D2, D3, D1, D4, D5, ... , D1000.  In 
this manner, we can keep the ranking order giv-
en by Okapi/Lucene for documents in the current 
result set but still assign them higher ranks.

2.3.Re-rank module 

After we generate the final result set and de-
cided their ranks, a re-rank module is adopted to 
adjust the rankings considering only these rele-
vant documents. We adopt another weighting 
formula to re-weight terms in these documents 
[3].  The formula re-scores terms by taking 
many different features in consideration, such as 
frequency, position in paragraph, term’s distri-
bution, etc..  Using this formula, we can give 
documents new scores by combining scores of 
these document terms.  Since the formula takes 
term distribution in consideration, the re-rank 
depth should be limited.  Otherwise irrelevant 
noises may decrease the performance.  In offi-
cial runs a re-rank depth 200 is applied. 

Another issue is that the re-rank module as-
sumes its input documents are mainly discussing 
the same topic.  In fact, this assumption really 
harms performance in this application and we 
will discuss the reason in Section 4.4. 

3. Experimental Results 

The official corpus should be CIRB-020 and 
CIRB-040.  By mistake, we included 
CIRB-011 as our experimental corpus, too.  
Therefore, lots of documents that are not in-
cluded in the official dataset are retrieved in our 
official runs and evaluated as negative answers. 

The metrics to evaluate the performance of 
this task is Mean Average Precision (MAP), 
Q-measure, and MSn-DCG.  All of these me 
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Filtered Original 
Run ID 

AP Q-measure MSn-DCG AP Q-measure MSn-DCG

NTUBROWS-Run1 0.4628 0.4795 0.6711 0.3587 0.3780 0.6400 

NTUBROWS-Run2 0.2300 0.2772 0.5239 0.2008 0.2498 0.4993 

NTUBROWS-Run3 0.2359 0.2788 0.5090 0.2129 0.2495 0.4853 

NTUBROWS-Run4 0.2371 0.2811 0.5158 0.1935 0.2303 0.4640 

NTUBROWS-Run5 0.1871 0.2218 0.4208 0.1653 0.2026 0.4041 

Table 1. Original and filtered results of five runs. 

Model NTUBROWS-Run AP Q-measure MSn-DCG

Lucene_Char_Baseline_Filtered  0.3672 0.3881 0.5877 

Lucene_Char_Baseline_Filtered_Rerank  0.2091 0.2476 0.4743 

Lucene_Char_Required_Filtered  0.2597 0.2796 0.4800 

Lucene_Char_Required_Filtered_Rerank Run5 0.1871 0.2218 0.4208 

Lucene_Word_Baseline_Filtered  0.4457 0.4669 0.6831 

Lucene_Word_Baseline_Filtered_Rerank  0.2425 0.2897 0.5384 

Lucene_Word_Required_Filtered  0.4353 0.4543 0.6725 

Lucene_Word_Required_Filtered_Rerank Run2 0.2300 0.2772 0.5239 

Okapi_Baseline_Filtered  0.4635 0.4811 0.6760 

Okapi_Baseline_Filtered_Rerank Run4 0.2371 0.2811 0.5158 

Okapi_Required_Filtered Run1 0.4628 0.4795 0.6711 

Okapi_Required_Filtered_Rerank.xml Run3 0.2359 0.2788 0.5090 

Table 2. Results of all the combination of our system. 

trics are based on the whole list of documents 
returned by the system and reword earlier return 
of true positive records.  Their specifications 
are described in overview paper [4]. 

Five runs are submitted officially by us.  
Their settings are shown in Table 3. 

NTUBROWS-RUN 1 2 3 4 5

Okapi/Lucene O L O O L

Char/Word C W C C C

Baseline/Required R R R B R

Re-rank (N/Y) N Y Y Y Y

Table 3. Settings of five official runs. 

Table 1 shows the original results and the 
results of filtering out CIRB010 answers.  AP 
and Q-measure are improved about 19% and 
17%, and MSn-DCG is improved nearly 6% for 
each run.  The best result is Run1, which 

achieved a MAP of 0.4628, Q-measure of 
0.4795, and MSn-DCG of 0.6711. 

Table 2 shows the experimental results of all 
the combinations we have, i.e., Okapi or Lucene, 
using baseline or required query, and re-ranked 
or not.  We use the following naming principal. 

Okapi/Lucene: Beginning with the term 
Okapi or Lucene indicates which base re-
trieval model was used. 
Char/Word: There are character-based and 
word-based models in Lucene, but Okapi is 
word-based. 
Baseline/Required: Models named baseline 
are not using the required set described in 
Section 2.2, but using the original query 
terms with stop words removed. 
Filtered: The result list does not include 
documents in CIRB010. 
Rerank: Applying re-rank module to the re-
sult set. 
The best setting for our system is using Oka-

pi without re-ranking, which achieved an aver-
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age precision 0.4635 and a Q-measure 0.4811.  
However, for the MSn-DCG score, Word-based 
Lucene without re-ranking is the best setting, 
which achieves an MSn-DCG score 0.6831. 

4. Discussion 

After analyzing experimental results and da-
tasets, we find several issues that decreasing the 
performance.  They are discussed in the fol-
lowing sections.

4.1.Dataset

As mentioned in Section 3, we mixed 
CIRB-011 into the corpus which is not in the 
official dataset.  We retrieved about 17,000 
documents from CIRB-011 in each run, and they 
were all evaluated as negative records.  It’s a 
drag on our performance.  After filtering out 
those documents, the MAP and Q-measure are 
improved over 19% and 17%, and MSn-DCG is 
improved nearly 6%.  Table 1 shows the results 
before and after filtering out the answers from 
wrong dataset. 

4.2.Quality of query terms 

In traditional information retrieval tasks, we 
have several sources for query terms like titles, 
descriptions, narratives, and concepts etc..  
Having these sources, we can generate much 
more query terms for the retrieval model.  In 
this task, the “QUESTION” field of the official 
topic file is the only source for us to get the in-
formation needs.  Other fields seemed not to 
provide more information.  Lack of query terms 
lead to a poor performance of our information 
retrieval system, and also it is a major problem 
to be solved in the future. 

4.3.Results of retrieving relevant and 
partial relevant documents 

From experimental results, we found that 
submitted Run2 and Run3 have less mean aver-
age precision but higher MSn-DCG scores.  
Because MAP considers the amount of correct 
answers while MSn-DCG calculates different 
gains from reported “relevant” and “partially 
relevant” documents, we suspect that our system 
is weak in retrieving partially relevant docu-
ments.  To confirm this postulation, we calcu-
late the percentage of retrieved “relevant” and 
“partially relevant” documents in our results.  
We then find that the number of retrieved “par-

tially relevant” documents is about 4% to 7% 
fewer than that of “relevant” documents.  This 
result suggests that we may need to relax the 
restriction when retrieving documents or find 
more clues to retrieve more partial relevant 
documents.

4.4.Pre-conditions for Re-ranking 

Table 2 shows that the re-rank module did 
harm to the system performance.  After 
re-ranking, the performance of each model drops 
around 45% compared to the original.  After 
analyzing system performance by query, we find 
that the re-rank module improves the perform-
ance only when the original retrieved documents 
are of a certain quality.  In other words, a cer-
tain percentage of the retrieved documents be-
fore re-ranking must be relevant or at least par-
tial relevant.  Therefore we conclude that if the 
quality of original result is ensured, re-rank 
module will help.  If not, it is not suitable to 
apply re-rank module. 

For example, Topic id ACLIA1-CT-T200 is 
the topic concerning “Who is Pope John Paul 
II?”  On this topic, we retrieved 13 relevant 
results and 87 partial relevant results in top 200 
documents, which is our re-rank depth.  In this 
case, half of the documents being re-ranked are 
relevant to the topic and the MAP improves 
from 0.2413 to 0.3943. 

But there are some other topics which don’t 
have more than 50 relevant documents in top 
200.  In such topics, the re-rank module will 
not help because irrelevant documents involved 
are way too much than relevant documents.  In 
this case, non-relevant subtopics in the document 
set will be weighted more than relevant subtop-
ics so that irrelevant documents will be ranked 
higher, because irrelevant information over-
whelms the relevant. 

4.5.Topic related issues 

We find that several issues which influence 
the performance are related to topics.  In this 
section, we will discuss three issues of them. 

First, evaluation results of topics of different 
query (question) types vary.  There are four 
query types in IR4QA task, i.e., event, definition, 
biography and relationship.  Topics of query 
type relationship have worst performance in our 
experiments.  These topics ask about the rela-
tionship between some entities A and B.  If one 
of A and B appears much more frequently in the 
document set than the other, the retrieved docu-
ments will be dominated by it and hence not 
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relevant to the relationship.  Thus, the per-
formance was not satisfactory. 

Second, topics concerning conditioned nu-
merical range perform badly.  Some topics like 
“since 1997” or “no less than 6.8” are not easy to 
deal with since our system does not involve the 
pre-processing of queries like in the traditional 
question answering tasks.  Therefore, the sys-
tem was not able to regard the numerical con-
straints for these topics and led to a bad per-
formance. 

The third issue concerns abbreviations in 
topics.  For example, “ -

”(Israeli-Palestinian) is abbreviated to “ ”
(I-Pa).  This decreases performance since the 
retrieval model does not understand the most 
important terms, these abbreviations, in queries.  
These abbreviations may be segmented wrongly 
in the first step.  Even if they are segmented 
correctly, there is no way to find them in rele-
vant documents without expansions.  As a re-
sult, our system achieved relatively low per-
formance for topics containing abbreviations. 

5. Conclusion and Future Work 

In this paper, we propose an information re-
trieval system that achieves satisfactory per-
formance.  This system is based on a required 
set of terms and a re-ranking approach to adapt 
the system from the traditional IR task to the 
IR4QA task. 

We evaluate the results of all designed ex-
periments.  Our re-rank module is effective 
when the original retrieved documents are 
mostly relevant, but there are still some cases 
where the performance is not so satisfactory.  
These cases involve the selection of query terms 
and the characteristics of topics. 

Since we have found the defects of our sys-
tem, many methods for improving it could be 
experimented in the future.  For example, we 
could incorporate a query expansion algorithm 
into our system to enhance the performance of 
the retrieve model.  We could also construct a 
query model utilizing the query type to enhance 
our system and incorporate with the backend QA 
system.
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