
Proceedings of NTCIR-7 Workshop Meeting, December 16–19, 2008, Tokyo, Japan

NTUBROWS System for NTCIR-7

Information Retrieval for Question Answering

I-Chien Liu, Lun-Wei Ku, *Kuang-hua Chen, and Hsin-Hsi Chen
Department of Computer Science and Information Engineering,

*Department of Library and Information Science

National Taiwan University

Taipei, Taiwan

{icliu, lwku}@nlg.csie.ntu.edu.tw; khchen@ntu.edu.tw; hhchen@csie.ntu.edu.tw

Abstract

This paper presents an information retrieval
system for the NTCIR-7 information retrieval for
question answering task. This system is com-
posed by three parts: (1) Query processing (2)
Retrieval model (3) Re-rank module. Query
processing filters stop-words and selects query
terms to generate a required term set for further
retrieval. Threes retrieval models from two
famous retrieval systems are adopted. They
retrieved relevant documents based on the gen-
erated required set. Finally, Re-rank module
gives documents scores according to the distri-
butions of their possessive terms. The per-
formance of our system achieves a mean average
precision (MAP) of 0.4635, a Q-measure of
0.4811, and an MSn-DCG of 0.6831 on
NTCIR-7 IR4QA testing set.

1. Introduction

Queries present users’ information needs.
Traditional information retrieval systems com-
pute a numeric score on how relevant each
document is to the query, and rank the docu-
ments according to this score. However, as
technology improves, users may wish to find
relevant documents by querying with natural
questions instead of terms or some predefined
topics.

The aim of information retrieval for question

answering is different from original information
retrieval. It is to see how the performance is
when the query is a question, or at least ques-
tion-like. It may give a reference for how is the
performance before answering questions, which
should be the upper bound for the performance
of question answering. However, with this task
description, we may also design algorithms us-
ing some attributes of questions, or discuss re-
sults by question types.

For this task, we borrowed some ideas tradi-
tional QA task and developed a three-phrased
system. The first phrase is query processing.
Query processing performed a special stop-word
filtering and produced a required set of query
terms. The concept of stop-words filtering is
common in natural language processing, but we
define stop-words by analyzing queries (ques-
tions). The second phase, applying retrieval
models then utilized this required set to retrieve
relevant documents. The concept of “required”
which treats the selected terms as in the boolean
model is also inherent from techniques in QA
domain. In the last phase, a re-rank module
was applied to reorder the result list. This
re-rank model considers paragraph-level infor-
mation and hence more similar to the relevant
passage retrieval in QA task.

The remainder of the paper is organized as
follows. Section 2 contains an overview of our
system and describes the methods to implement
it. Section 3 includes the evaluation results.
Section 4 is a discussion on error analysis.
Finally, section 5 concludes this paper and indi-

― 153 ―

Proceedings of NTCIR-7 Workshop Meeting, December 16–19, 2008, Tokyo, Japan

Figure 2. Query processing workflow.

cates the direction of future work.
2. System Description

Figure 1 shows the framework of our IR4QA
system. In this system, we first chunk a query
into several terms, which are then passed to the
retrieval model. Retrieval model outputs a list
of relevant documents in order. Finally, these
records reported by the retrieval model are
re-ranked by the re-rank module.

Figure 1. System framework.

2.1.Query processing

To select query terms, we only use the words
in the "QUESTION" field, since the "NARRA-
TIVE" part does not seem to provide more in-
formation at the first sight. Then we try to re-
move stop words from these query terms.
These sentences in the "QUESTION" fields are
all questions, and their possessive terms play
different roles. What we try to remove are
those terms which appear frequently in questions,
and they are defined as stop words in this paper.
Therefore, instead of look up in a general
stop-word list, we count the frequencies of each
term in all queries and drop it as stop words if
the frequency is over 20. Query processing
workflow is shown in Figure 2.

Except those terms we may not need in a
query, the importance of other terms is not all
equal. A “required set” here denotes a set of
terms which is considered more important. The

required set try collect discriminative terms.
To select terms into the required set, we first
calculate their weights. The weight of term t is
calculated as follows:

∈
=

)(
2),()(

tDd
tdscoretweight (1)

where D(t) is the set of documents containing
term t, and score(t,d) is given by the retrieval
model (will be introduced in Section 2.2). The
score(t,d) represents the score of term t in spe-
cific document d. Terms will be marked as
required when it’s weighted higher than the
threshold. There is one threshold for each
query and it is set to 70% of the maximum
weight among terms in each query.

{ }7.0*)()(| qMAXWtweightqtRSq >∈=

Where)(max)(tweightqMAXW qt∈=

(2)

2.2.Retrieval model

Unlike words in the Latin language, Chinese
words don't have obvious boundary divided by
spaces. Chinese word segmentation is usually
necessary for determining the word boundary
before processing Chinese texts. A sentence is
considered as a serial of characters before seg-
mentation. After segmentation a sentence can
be considered as a serial of words. Therefore,
there are two different types of information re-
trieval models, word-based model and charac-
ter-based model. The basic unit to be indexed
in a word-based and a char-based retrieval model
is a word and a character, respectively.

Here we demonstrate the differences between
two models by an example. The sentence "

" (I wear jeans today) is a
sequence of seven characters. After segmenta-
tion, it becomes a sequence of four words "
"(I), " "(today), " "(wear), "
"(jeans). If we retrieve by the query term

― 154 ―

Proceedings of NTCIR-7 Workshop Meeting, December 16–19, 2008, Tokyo, Japan

Figure 3. Retrieval model with required set.

(cowboy, one word composite of two characters),
this sentence will be retrieved in the char-based
model but not in the word-based model, since it
is only partially matched with the word "

" (jeans). Though it seems better to adopt a
word-based model in this case, the performance
of the word-based retrieval model may be influ-
enced by the performance of the word segmenta-
tion.

We adopt models of two well-known infor-
mation retrieval systems, Okapi and Lucene.
They were chosen because their basic units of
indexing are different. Okapi is a word-based
retrieval model. Any words need to be exactly
the same as indexed if they can be retrieved.
Lucene provides both a character-based model
and a special word-based model which retrieves
documents in which words match partially with-
in one word with the query term, but words par-
tially match the query term cross the boundary
of words will not be considered relevant.

Figure 3 illustrates how the retrieval system
works. As mentioned in Section 2.1, a required
set is generated for each query. For each term
in the required set, we used it to query Oka-
pi/Lucene and got a result list of relevant docu-
ments. We then intersect these records and
generate a new result set. After intersection,
every document in the result set is guaranteed to
have all terms in the required set. In other
words, it performs the “AND” operation on
search engines.

At last, all query terms are used to query
Okapi/Lucene together, and a list of relevant
documents, D1, ... , DN is obtained. For each
document Di, we keep it as in the final result set
if Di is in the current result set. This step gives
ranks to the documents in the current result set.
However, if the size of the current result set is
less than 1000, we will not have a final result set
containing 1000 documents. In this case, we
selected documents to append it to the final re-
sult set from those haven’t been selected among

D1 to Dn by their ranks. For instance, if the cur-
rent result set only contains D2 and D3, the final
result will be D2, D3, D1, D4, D5, ... , D1000. In
this manner, we can keep the ranking order giv-
en by Okapi/Lucene for documents in the current
result set but still assign them higher ranks.

2.3.Re-rank module

After we generate the final result set and de-
cided their ranks, a re-rank module is adopted to
adjust the rankings considering only these rele-
vant documents. We adopt another weighting
formula to re-weight terms in these documents
[3]. The formula re-scores terms by taking
many different features in consideration, such as
frequency, position in paragraph, term’s distri-
bution, etc.. Using this formula, we can give
documents new scores by combining scores of
these document terms. Since the formula takes
term distribution in consideration, the re-rank
depth should be limited. Otherwise irrelevant
noises may decrease the performance. In offi-
cial runs a re-rank depth 200 is applied.

Another issue is that the re-rank module as-
sumes its input documents are mainly discussing
the same topic. In fact, this assumption really
harms performance in this application and we
will discuss the reason in Section 4.4.

3. Experimental Results

The official corpus should be CIRB-020 and
CIRB-040. By mistake, we included
CIRB-011 as our experimental corpus, too.
Therefore, lots of documents that are not in-
cluded in the official dataset are retrieved in our
official runs and evaluated as negative answers.

The metrics to evaluate the performance of
this task is Mean Average Precision (MAP),
Q-measure, and MSn-DCG. All of these me

― 155 ―

Proceedings of NTCIR-7 Workshop Meeting, December 16–19, 2008, Tokyo, Japan

Filtered Original
Run ID

AP Q-measure MSn-DCG AP Q-measure MSn-DCG

NTUBROWS-Run1 0.4628 0.4795 0.6711 0.3587 0.3780 0.6400

NTUBROWS-Run2 0.2300 0.2772 0.5239 0.2008 0.2498 0.4993

NTUBROWS-Run3 0.2359 0.2788 0.5090 0.2129 0.2495 0.4853

NTUBROWS-Run4 0.2371 0.2811 0.5158 0.1935 0.2303 0.4640

NTUBROWS-Run5 0.1871 0.2218 0.4208 0.1653 0.2026 0.4041

Table 1. Original and filtered results of five runs.

Model NTUBROWS-Run AP Q-measure MSn-DCG

Lucene_Char_Baseline_Filtered 0.3672 0.3881 0.5877

Lucene_Char_Baseline_Filtered_Rerank 0.2091 0.2476 0.4743

Lucene_Char_Required_Filtered 0.2597 0.2796 0.4800

Lucene_Char_Required_Filtered_Rerank Run5 0.1871 0.2218 0.4208

Lucene_Word_Baseline_Filtered 0.4457 0.4669 0.6831

Lucene_Word_Baseline_Filtered_Rerank 0.2425 0.2897 0.5384

Lucene_Word_Required_Filtered 0.4353 0.4543 0.6725

Lucene_Word_Required_Filtered_Rerank Run2 0.2300 0.2772 0.5239

Okapi_Baseline_Filtered 0.4635 0.4811 0.6760

Okapi_Baseline_Filtered_Rerank Run4 0.2371 0.2811 0.5158

Okapi_Required_Filtered Run1 0.4628 0.4795 0.6711

Okapi_Required_Filtered_Rerank.xml Run3 0.2359 0.2788 0.5090

Table 2. Results of all the combination of our system.

trics are based on the whole list of documents
returned by the system and reword earlier return
of true positive records. Their specifications
are described in overview paper [4].

Five runs are submitted officially by us.
Their settings are shown in Table 3.

NTUBROWS-RUN 1 2 3 4 5

Okapi/Lucene O L O O L

Char/Word C W C C C

Baseline/Required R R R B R

Re-rank (N/Y) N Y Y Y Y

Table 3. Settings of five official runs.

Table 1 shows the original results and the
results of filtering out CIRB010 answers. AP
and Q-measure are improved about 19% and
17%, and MSn-DCG is improved nearly 6% for
each run. The best result is Run1, which

achieved a MAP of 0.4628, Q-measure of
0.4795, and MSn-DCG of 0.6711.

Table 2 shows the experimental results of all
the combinations we have, i.e., Okapi or Lucene,
using baseline or required query, and re-ranked
or not. We use the following naming principal.

Okapi/Lucene: Beginning with the term
Okapi or Lucene indicates which base re-
trieval model was used.
Char/Word: There are character-based and
word-based models in Lucene, but Okapi is
word-based.
Baseline/Required: Models named baseline
are not using the required set described in
Section 2.2, but using the original query
terms with stop words removed.
Filtered: The result list does not include
documents in CIRB010.
Rerank: Applying re-rank module to the re-
sult set.
The best setting for our system is using Oka-

pi without re-ranking, which achieved an aver-

― 156 ―

Proceedings of NTCIR-7 Workshop Meeting, December 16–19, 2008, Tokyo, Japan

age precision 0.4635 and a Q-measure 0.4811.
However, for the MSn-DCG score, Word-based
Lucene without re-ranking is the best setting,
which achieves an MSn-DCG score 0.6831.

4. Discussion

After analyzing experimental results and da-
tasets, we find several issues that decreasing the
performance. They are discussed in the fol-
lowing sections.

4.1.Dataset

As mentioned in Section 3, we mixed
CIRB-011 into the corpus which is not in the
official dataset. We retrieved about 17,000
documents from CIRB-011 in each run, and they
were all evaluated as negative records. It’s a
drag on our performance. After filtering out
those documents, the MAP and Q-measure are
improved over 19% and 17%, and MSn-DCG is
improved nearly 6%. Table 1 shows the results
before and after filtering out the answers from
wrong dataset.

4.2.Quality of query terms

In traditional information retrieval tasks, we
have several sources for query terms like titles,
descriptions, narratives, and concepts etc..
Having these sources, we can generate much
more query terms for the retrieval model. In
this task, the “QUESTION” field of the official
topic file is the only source for us to get the in-
formation needs. Other fields seemed not to
provide more information. Lack of query terms
lead to a poor performance of our information
retrieval system, and also it is a major problem
to be solved in the future.

4.3.Results of retrieving relevant and
partial relevant documents

From experimental results, we found that
submitted Run2 and Run3 have less mean aver-
age precision but higher MSn-DCG scores.
Because MAP considers the amount of correct
answers while MSn-DCG calculates different
gains from reported “relevant” and “partially
relevant” documents, we suspect that our system
is weak in retrieving partially relevant docu-
ments. To confirm this postulation, we calcu-
late the percentage of retrieved “relevant” and
“partially relevant” documents in our results.
We then find that the number of retrieved “par-

tially relevant” documents is about 4% to 7%
fewer than that of “relevant” documents. This
result suggests that we may need to relax the
restriction when retrieving documents or find
more clues to retrieve more partial relevant
documents.

4.4.Pre-conditions for Re-ranking

Table 2 shows that the re-rank module did
harm to the system performance. After
re-ranking, the performance of each model drops
around 45% compared to the original. After
analyzing system performance by query, we find
that the re-rank module improves the perform-
ance only when the original retrieved documents
are of a certain quality. In other words, a cer-
tain percentage of the retrieved documents be-
fore re-ranking must be relevant or at least par-
tial relevant. Therefore we conclude that if the
quality of original result is ensured, re-rank
module will help. If not, it is not suitable to
apply re-rank module.

For example, Topic id ACLIA1-CT-T200 is
the topic concerning “Who is Pope John Paul
II?” On this topic, we retrieved 13 relevant
results and 87 partial relevant results in top 200
documents, which is our re-rank depth. In this
case, half of the documents being re-ranked are
relevant to the topic and the MAP improves
from 0.2413 to 0.3943.

But there are some other topics which don’t
have more than 50 relevant documents in top
200. In such topics, the re-rank module will
not help because irrelevant documents involved
are way too much than relevant documents. In
this case, non-relevant subtopics in the document
set will be weighted more than relevant subtop-
ics so that irrelevant documents will be ranked
higher, because irrelevant information over-
whelms the relevant.

4.5.Topic related issues

We find that several issues which influence
the performance are related to topics. In this
section, we will discuss three issues of them.

First, evaluation results of topics of different
query (question) types vary. There are four
query types in IR4QA task, i.e., event, definition,
biography and relationship. Topics of query
type relationship have worst performance in our
experiments. These topics ask about the rela-
tionship between some entities A and B. If one
of A and B appears much more frequently in the
document set than the other, the retrieved docu-
ments will be dominated by it and hence not

― 157 ―

Proceedings of NTCIR-7 Workshop Meeting, December 16–19, 2008, Tokyo, Japan

relevant to the relationship. Thus, the per-
formance was not satisfactory.

Second, topics concerning conditioned nu-
merical range perform badly. Some topics like
“since 1997” or “no less than 6.8” are not easy to
deal with since our system does not involve the
pre-processing of queries like in the traditional
question answering tasks. Therefore, the sys-
tem was not able to regard the numerical con-
straints for these topics and led to a bad per-
formance.

The third issue concerns abbreviations in
topics. For example, “ -

”(Israeli-Palestinian) is abbreviated to “ ”
(I-Pa). This decreases performance since the
retrieval model does not understand the most
important terms, these abbreviations, in queries.
These abbreviations may be segmented wrongly
in the first step. Even if they are segmented
correctly, there is no way to find them in rele-
vant documents without expansions. As a re-
sult, our system achieved relatively low per-
formance for topics containing abbreviations.

5. Conclusion and Future Work

In this paper, we propose an information re-
trieval system that achieves satisfactory per-
formance. This system is based on a required
set of terms and a re-ranking approach to adapt
the system from the traditional IR task to the
IR4QA task.

We evaluate the results of all designed ex-
periments. Our re-rank module is effective
when the original retrieved documents are
mostly relevant, but there are still some cases
where the performance is not so satisfactory.
These cases involve the selection of query terms
and the characteristics of topics.

Since we have found the defects of our sys-
tem, many methods for improving it could be
experimented in the future. For example, we
could incorporate a query expansion algorithm
into our system to enhance the performance of
the retrieve model. We could also construct a
query model utilizing the query type to enhance
our system and incorporate with the backend QA
system.

References

[1] OKAPI information retrieval system
http://www.soi.city.ac.uk/andym/OKAPI-P
ACK

[2] Lucene information retrieval engine
http://lucene.apache.org

[3] Ku, L.-W., Lee, L.-Y., Wu, T.-H. and

Chen, H.-H. (2005). Major topic detection
and its application to opinion summariza-
tion. SIGIR 2005, pages 627-628.

[4] Sakai, T., Kando, N., Lin, C.-J., Mitamura,
T., Ji, D., Chen, K.-H., Nyberg, E.:
Overview of the NTCIR-7 ACLIA IR4QA
Task, Proceedings of NTCIR-7, to appear,
2008.

― 158 ―

